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Abstract—We introduce Satometer, a tool that can be used to
estimate the percentage of the search space actually explored by
a backtrack Boolean satisfiability (SAT) solver. Satometer calcu-
lates a normalized minterm count for those portions of the search
space identified by conflicts. The computation is carried out using
a zero-suppressed binary decision diagram data structure and can
have adjustable accuracy. The data provided by Satometer can
help diagnose the performance of SAT solvers and can shed light
on the nature of a SAT instance.

Index Terms—Algorithms, Boolean algebra, Boolean functions,
computer-aided design (CAD), design automation, formal logic,
logic, logic functions, search methods.

I. INTRODUCTION

T HE LAST few years have seen significant algorithmic
advances in, and carefully crafted implementations of,

Boolean satisfiability (SAT) solvers [2], [15], [21], [24], [27],
[29]. This has led to their successful application to a wide range
of large-scale electronic design automation (EDA) problem
instances consisting of thousands of variables and millions of
clauses [3], [12], [16], [22], [25], [26]. Despite these remark-
able developments, SAT solvers cannot escape the underlying
worst-case exponential complexity of their search space and
must sometimes be aborted after a certain time-out limit has
been reached. Typically, when a solver aborts it provides very
little data about how much progress it had achieved up to that
point. Such data can be quite useful. Knowing, for instance,
that the solver had managed, after several hours, to explore
only 1% of the search space might suggest a very hard problem
instance and the need, perhaps, to try a different approach.
If, on the other hand, the solver reports exploring more than
99% of the search space without finding a solution, it may be
reasonable to assume that the instance has very few satisfying
assignments or is possibly unsatisfiable.

Satometer (pronounced like barometer) is an accessory that
can be used with any backtrack search SAT solver to report the
percentage of search space actually explored by the solver. It re-
quires the solver to emit the set of clauses corresponding to the
conflicts encountered during the search. It can be used dynami-
cally, while the SAT solver is running, to indicate progress in the
search for a solution. It is more useful, however, as a postpro-
cessor to analyze the result of an aborted or completed search.

Manuscript received June 24, 2002; revised November 27, 2002 and Feb-
ruary 5, 2003. This paper was recommended by Guest Editor L. Lavagno. This
work was supported in part by the DARPA/MARCO Gigascale Silicon Research
Center, in part by an Agere Systems/SRC Research fellowship, and in part by
the National Science Foundation under Grant 0205288. This paper was recom-
mended by Guest Editor L. Lavagno.

The authors are with the Electrical Engineering and Computer Science De-
partment, University of Michigan, Ann Arbor, MI 48109-2122 USA (e-mail:
faloul@umich.edu; bsieraws@umich.edu; karem@umich.edu).

Digital Object Identifier 10.1109/TCAD.2003.814960

The paper is organized as follows. In Section II, we present
an overview of SAT. This is followed by a summary of pre-
vious work in Section III. In Section IV, we introduce our mea-
sure of search progress. We then describe, in Section V, how
this measure can be computed using binary decision diagrams
(BDDs) and zero-suppressed BDDs (ZBDDs). In Section VI,
we illustrate the utility of this measure in a variety of exper-
imental scenarios and evaluate the performance of Satometer.
We conclude in Section VII with a summary of the paper’s main
contributions.

II. PRELIMINARIES

A Boolean formula given in conjunctive normal form
(CNF) consists of a conjunction of clauses. Each clause is a
disjunction of literals, where a literal is either a variableor its
negation . A clause issatisfiedif at least one of its literals
is set to 1,unsatisfiedif all its literals are set to 0,unit, if all
but one literal are set to 0, andunresolved, otherwise. Conse-
quently, a formula is satisfied if all its clauses are satisfied, and
unsatisfied if at least one clause is unsatisfied. The goal is to
identify a set of assignments for variables that would satisfy
the formula or prove that no such assignment exists and that
the formula is unsatisfiable.

Backtrack search solvers have been shown to be very robust
in solving hard, real-world SAT instances [15], [21]. The Davis,
Logemann, and Loveland (DLL) search procedure [8] provides
the basis for the majority of backtrack search algorithms. The
procedure performs a depth-first exploration of the search space
by recursively: 1) making adecision assignment, i.e., selecting,
according to some branching heuristic, an unassigned variable
and setting its value to either 1 or 0; 2) deriving additional as-
signments, referred to asimplications, to other variables due to
the decision assignment(s); and 3) systematically backtracking
fromconflicts, i.e., assignment that cause the formula to become
unsatisfied, in order to make other (untried) decisions. Implica-
tions are triggered by theunit-clause rulewhich sets the only
unassigned literal in a unit clause (see the previous definition) to
the only value that would satisfy the clause, namely 1. Repeated
application of this rule is referred to as Boolean constraint prop-
agation (BCP) [21]. The procedure terminates and proves satis-
fiability when all clauses are satisfied or unsatisfiability when
no new variable assignment can be made without producing an
unsatisfied clause.

Recently, several enhancements to the DLL approach have
been proposed. Among the various enhancements,conflict anal-
ysis, which was introduced in GRASP [21], was shown to sig-
nificantly prune the search space. The procedure is called after
each conflict to analyze its causes and to generate adequate in-
formation—in the form of additional so-calledconflict-induced
clauses—to prevent the conflict from recurring in other parts of
the search space.
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III. PREVIOUS WORK

Researchers have always been interested in measuring the
search progress of backtrack search solvers. Ideally, the best
measure of search progress is an accurate estimate of the amount
of time needed to complete the search. Despite the predictive
nature of this problem and the difficulty of computing an exact
answer, several attempts have been made to measure search
progress.

The first attempt to predict the time needed by a backtrack
search program to complete was proposed by Knuth [10]. In
this approach, iterative sampling is used to estimate the size of
the decision tree that will be searched to solve the problem. The
basic idea is to explore a single random path from the root to a
leaf node. Assuming that all nodes, at decision level, have the
same number of successors, denoted as, the number of nodes
in the decision tree can be estimated using the formula

(1)

The estimate is improved by averaging over a number of
iterations.

More recent work by Purdom [17] extended Knuth’s algo-
rithm with partial backtracking. The idea is to traverse suc-
cessor nodes for each visited node as opposed to traversing a
single successor node as in Knuth’s algorithm. Purdom showed
that this modification is more effective on deep trees. The pro-
posed algorithm is identical to Knuth’s algorithm when
and follows a complete backtracking approach when all succes-
sors are traversed. The tradeoff between the estimation accuracy
and the runtime overhead depends on the value of.

Knuth’s algorithm was also extended by Chen [6]. Chen’s ap-
proach is based onheuristic samplingof the nodes in the deci-
sion tree, in which a cost function is associated with each node.
The goal is to estimate the cost of processing the complete set
of nodes in the decision tree.

In the SAT context, all three tree size estimation attempts
are based on the assumption of astatic clause database, i.e.,
the clause database is assumed to be fixed during the search
process. It is therefore unclear how such estimation methods can
be extended to handle the recent backtrack search programs that
dynamicallyaugment the clause database using clause-learning
techniques, such as conflict analysis [21].

A recent effort that handles a dynamic clause database was
proposed by Kokotov and Shlyakhter [11]. In their approach, a
progress bar is integrated into a backtrack SAT solver to esti-
mate the time left to complete the search. The bar is updated
based on eitherhistorical or predictiveestimates of the size of
the decision tree maintained by the SAT solver. Historical es-
timators are based on averaging the time spent on nodes at the
same decision level of the node being examined. The assump-
tion is that particular, structured problems, are likely to share
similar subtree sizes between nodes at the same decision level.
They propose to further improve the average by weighting it
according to the distance between the nodes. The predictive es-
timators ignore the subtree sizes of previous nodes and instead
focus on estimating the needed runtime by analyzing the unre-
solved clauses. The premise is that variables that eliminate more

clauses, either by satisfying clauses directly or implying other
assignments, are likely to require a smaller subtree size which
needs less time to explore. They reported that the bar is able to
predict progress with an accuracy of 80%–90% without signifi-
cantly impacting the solver’s run time. Their approach, however,
provides no guarantees to confine the accuracy of the results.

The metric we propose in this paper is different than all pre-
vious metrics in that it tries to capture the size of the search
space that has already been explored. Thus, it is aretrospective
rather than aprospectivemeasure of search progress and does
not predict how much more time is required to finish the search.
It is important to note that these two metrics are complementary,
in the sense that measuring the size of the covered search space
is viewed as an additional piece of information that along with
an estimate of the time required to complete the search can pro-
vide a more complete picture of the performance of the solver.
In particular, such a retrospective metric can be used to analyze
the result of an aborted search. We noticed that a SAT solver
that manages to explore only a small portion of the search space
after running for a long amount of time,might suggest a hard
problem instance. For example, the state-of-the-art SAT solver
Chaff [15] was unable to solve thek2_fix_gr_rcs_w9instance
[16] (shown in Fig. 6) after running for 500 s. It explored less
than 45% of the search space which might indicate that the in-
stance is hard to solve. In fact, Chaff was still unable to solve the
problem after running for 10 h. On the other hand, a solver that
explores a high percentage of the search space without finding a
solution, might suggest an instance with few satisfying assign-
ments or an unsatisfiable instance. Fig. 6 shows an example in
which Chaff was able to explore almost 99.7% of the search
space for the9 vliw_bp_mcinstance [26]. Upon completing the
search, the instance was proven to be unsatisfiable. In the fol-
lowing sections, we will describe the space coverage metric and
show how it can be efficiently computed.

IV. SEARCH SPACE COVERAGE

In our approach, we view the search process as a sequence of
moves that continually (and systematically) modify a (partial)
variable assignment until: 1) a satisfying assignment (a solution)
is found; 2) the formula is proven to be unsatisfiable (has no
solution); or 3) a time-out limit is reached. Along the way, many
assignments that are explored will correspond to zeros of the
function represented by the formula and will cause the search
process to backtrack. Every time such a “conflict” occurs, it
identifies a portion of the search space that can be regarded as
exploredand found to contain no solutions.

Let denote the assignments that correspond
to the first conflicts. We can measure how much of the search
space has been explored by counting the number of minterms1

covered by the function . Normalizing
this count by the total size of the space yields the percentage of
the space that has been explored up to this point. We will use
the notation to express the normalized number of minterms
of the function . Thus, 75 , 25 , and

50 . In the sequel, we will refer to as thesize
of .

1A minterm is a complete truth assignment that sets the function to 1.
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Fig. 1. Execution traces of two different SAT solvers on the formula in (2) illustrating how search space coverage is measured. In the decision column,abc

means that 1 was assigned toa andb, and 0 was assigned toc.

This measure can be equivalently computed by considering
the conflict-induced clausesidentified at each conflict. Let

denote the conflict-induced clauses identified
after the first conflicts. In general, as one or more
conflict-induced clauses may be identified at each conflict.
The portion of the search space that would have been explored
after processing theth conflict can now be computed as

.
An illustration of these computations is shown in Fig. 1 for

the four-variable formula

(2)

V. COMPUTATION OF SEARCH SPACE COVERAGE

When the conflicting assignments are disjoint, i.e., when
for , space coverage can be simply calculated by

the formula

(3)

Equivalently, if the conflict-induced clauses are disjoint, i.e., if
for , then space coverage is simply

(4)

In other words, if conflicts identify nonoverlapping portions of
the search space, then the size of the explored space can be found
by simply adding the sizes of the different portions. In general,
this will only apply to standard backtrack algorithms that do not
employ conflict diagnosis to prune the search space. To com-
pute the size of the explored space when conflict diagnosis is
employed, we have no choice but to build some type of symbolic
representation for the disjunction of conflict assignments or the
conjunction of conflict-induced clauses. We describe below the

TABLE I
SEMANTICS OF DECISION DIAGRAMS

two representations we examined and show how we used them
to measure space coverage. Without loss of generality, we re-
strict the discussion to building representations for conjunctions
of conflict-induced clauses.

A. CoverageComputation Using BDDs

The conflict-induced clauses can be symbolically “ANDed”
using a reduced ordered binary decision diagram (ROBDD or
BDD for short) [4]. BDD semantics allow us to write the func-
tion at a node labeled with variableusing Boole’s expansion

(5)

where and are the functions associated with the 0- and
1-children of that node (see Table I). This immediately leads
to the following formula for the size of:

(6)
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The size of the function represented by a BDD can now be ob-
tained by sweeping the BDD from the terminal nodes toward
the top node and applying (6) at each visited node. The sweep
is initialized by setting and for the constant
functions of the terminal nodes.

B. CoverageComputation Using ZBDDs

The problem with the BDD representation, of course, is that
it quickly runs out of memory. An alternative that has lower
memory requirements is the ZBDD originally proposed by Mi-
nato [14] for manipulating large combination sets, including sets
of Boolean cubes. A combination setcan be regarded as aset
of sets, e.g., . Recently, Chatalic
and Simon [5] demonstrated that ZBDDs can be an effective
implicit representation of large CNF formulas and showed how
they can be used to perform “multiresolution” to solve some
large structured SAT instances. In this scenario, the aforemen-
tioned example set corresponds to the CNF formula

, i.e., each combination is viewed as an
OR term (a clause) and the entire set (a union of combinations)
as anAND term. Such an interpretation allows the semantics of
Boolean algebra to be layered on top of the semantics of set
algebra to obtain further compression of the ZBDD structure.
In particular, Chatalic and Simon extended the standard ZBDD
set-union operation to a subsumption-free union that automat-
ically removes any clause that is completely subsumed by an-
other clause. In the above example, combination is sub-
sumed by combination yielding thelogically equivalentset

. Additional reduction rules based on lit-
eral absorption, i.e., , were
subsequently described in [1].

The semantics of ZBDD nodes were first articulated by Lob-
bing et al. in [13]. Given a set of atoms , a ZBDD
node labeled with atom represents a combination setcon-
structed according to the formula

(7)

where and are the combination sets associated with the 0-
and 1-children of that node (see Table I). The terminal 0 and 1
nodes correspond, respectively, to the empty set (set of no com-
binations) and to the set of consisting of the empty combination.
The “product” in (7) is similar to the Cartesian product of two
sets and is defined by

(8)

For example, given the combination sets
and , their product is

(9)

It is important to note that Thus, for this example,
.

When used to represent a CNF formula, the formulaassoci-
ated with a ZBDD node labeled by variablefollows the same
template of (7) except that the union of atoms in a combination

is viewed as logicalOR and the union of the combinations is
viewed as logicalAND yielding

(10)

where and are the formulas associated with the 0- and 1-chil-
dren of that node (see Table I). The terminal 0 and 1 nodes, cor-
respond, respectively, to the constant 1 and constant 0 functions.

To represent CNF formulas with ZBDDs, the set of atoms is
taken to be the set of literals over which the formula is defined.
In addition, the positive and negative literals of each variable are
grouped together so that they are adjacent in the total order used
in constructing the ZBDD. This restriction facilitates, among
other things, the identification and automatic removal of tau-
tologies, i.e., combinations that have the form ( ), to
further reduce the size of the ZBDD [5].

To determine the size of the function represented by the CNF
formula associated with a ZBDD node, we must first rewrite
(10) as the disjoint sum of two terms

(11)

This immediately leads to

(12)

which, unlike (6) for BDDs, requires that we compute the size
of the product of the two child formulas. This is not a problem
if one or both of the children is a terminal node, but does pose a
serious complication if they are both internal nodes. We exam-
ined three solutions.

Exact Computation:One way to resolve this complication is
to (recursively) create additional ZBDD nodes for such products
until one of the children becomes terminal. This will provide us
with theexactanswer, but may exponentially increase the size
of the ZBDD. Some of that increase can be ameliorated with
caching and garbage collection. In particular, created nodes can
be eliminated as soon as they have been used to compute the
size of their parent.

Approximate Computation:An alternative to computing
exactly is to bound it. The upper bound is easily

established as and occurs when either
or . The lower bound can be determined by noting
that . Thus, is smallest when

is largest which occurs when and are disjoint.
This gives a lower bound of and yields the
interval

(13)

where the max in the lower bound ensures that the estimate re-
mains nonnegative.

An illustration of these computations is given in Fig. 2 for the
example formula . The percentages annotating the
ZBDD nodes denote the function sizes of their corresponding
formulas as computed by (12) and (13). The uncertainty in the
size at the top node is resolved, in Fig. 2(b), by creating a node
for the product of its children.

Controlled-Accuracy Computation:Between the two ex-
tremes of anexactsize and aboundcomputed according to (13)
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Fig. 2. Computation ofk(a+ b ) � (b+ c)k using (12) and (13). Nodes are labeled by literals, and annotated with their associated formulas and their
corresponding sizes.

Fig. 3. The special case wheng is not vacuous inx. Note thath’s node cannot
be labeled byx as this would create a tautology that is automatically eliminated.

we can produce a range of approximations that trade accuracy
with speed and memory consumption. Specifically, when a
given level of accuracy, say 10%, is exceeded by the bound
computed from (13), additional ZBDD nodes are created for the
product formulas until the desired level of accuracy is achieved.

We finally note that (12) is correct only whenis vacuous in
. The only situation when this is not true is depicted in Fig. 3

where ’s node is labeled by the literal . Substituting
in (11) produces the disjoint sum

(14)

which readily leads to

(15)

Fig. 4 illustrates the three possible computations on the
bridging-faultbf2670–001instance [9].

VI. EXPERIMENTAL EVALUATION

In this section, we show examples of how measuring search
space coverage can be used to interpret the results of running
SAT solvers as well as compare different heuristics. We con-
clude the section with an analysis of Satometer’s performance.

Satometer is implemented in C++ using the CUDD package
[23]. It incorporates the ZBDD enhancements described in [1]

Fig. 4. Percentage of explored search space for thebf2670–001instance
using the exact, approximate, and controlled-accuracy computations. Note
that the approximate computation has a maximum error of 44% and the
controlled-accuracy has a maximum error of 15%, even though the error limit
was set to 20%.

and [5] for symbolic manipulation of CNF formulas. We config-
ured it to report the size of the explored search space to within
20% of the exact answer; in many cases it was able to achieve
a higher level of accuracy or to even report the exact answer.
In the tables to follow, a single number in the “explored space”
columns indicates that an exact answer was reported; ranges are
indicated as intervals. All experiments were performed on an
AMD Athlon 1.2-GHz machine with 500-MB RAM running the
Linux operating system.

A. Effect of Preprocessing the CNF Formula

A variety of preprocessing techniques have been proposed to
modify a CNF formula before submitting it to a SAT solver.
These techniques generally add clauses to the formula in order
to increase the number of potential implications or perform styl-
ized algebraic simplifications to reduce the number of variables.
We used Satometer to measure the size of the search space cov-
ered by clauses obtained in preprocessing. We found an inter-
esting relation between the size of the covered search space and
the effectiveness of preprocessing, which does not indicate that
the relation is always that simple. In each of the presented cases,
we compared the size of the space explored by a standard DLL
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TABLE II
ADDITION OF SYMMETRY-BREAKING PREDICATES

TABLE III
ALGEBRAIC SIMPLIFICATION

algorithm [8] (i.e., without conflict analysis) on the original as
well as on the modified formula. The DLL solver uses a fixed
decision heuristic, chronological backtracking, and implements
BCP as in Chaff [15]. The time-out limit in these experiments
was set to 10 s;Satometer’s run time was negligible. The results
of these experiments are given in Tables II and III.

Addition of Symmetry-Breaking Predicates:In [7], the
authors propose analyzing a CNF formula: 1) to identify its
symmetries, and 2) to augment it with clauses that break those
symmetries. The intuition here is that the symmetry-breaking
clauses act by allowing only one of many equivalent variable
assignments to be a potential solution to the formula. If the
original formula is satisfiable, the number of solutions may
considerably decrease after preprocessing, clearly indicating
that the search space was reduced. Yet, even if the original
instance was not satisfiable, “the number of equivalent roads
leading nowhere” would be reduced, and a generic SAT solver
is likely to conclude much faster that no solution exists.

This intuition is confirmed by the data in Table II. Column
1 lists the name of the benchmark; columns 2 and 3 give the
number of variables () and clauses () in the original for-
mula; column 4 gives the number of symmetry-breaking clauses
that are added to the formula; and columns 5 and 6 indicate the
size of explored space reported by Satometer. The benchmarks
in this experiment are members of the unsatisfiablehole suite
(which relates to the Pigeonhole principle). The augmentation of
each instance by a small number of symmetry-breaking clauses
drastically enhances the ability of the SAT solver to prove un-
satisfiability. This trend is clearly accentuated as instance sizes
increase.

Algebraic Simplification: Another formula preprocessing
technique is based on formula simplification rules aimed at
reducing the number of variables or clauses in the formula [20].
We studied this approach on some large hard bounded model
checking [3] and microprocessor verification [26] instances.
Results on a representative sample are given in Table III.

Unlike the earlier experiments, the performance of the SAT
solver on the modified formulas is not significantly better
than its performance on the original formulas for the allotted
amount of search time. The best improvement is in thebarrel7
benchmark and can be attributed to the simplifier’s ability to
drastically reduce the number of variables (from 3523 to 800).
Note that the addition of smaller clauses prunes more of the
search space, but does not always accelerate finding a solution.
In general, the harder it is to deduce a clause (by resolution),
the greater is the effect of adding this clause to the current
formula. For example, symmetry-breaking or conflict-induced
clauses are valuable, due to the fact that deducing these clauses
by resolution is expensive. Satometer can successfully measure
the size of the search space pruned by such clauses, which
typically involves overlapping portions of the search space.

B. Analysis of Dynamic Techniques

In this set of experiments, we report on the application of
Satometer to various SAT solvers with a variety of parameters.
Our experiments involve three different SAT solvers: a simple
DLL solver [8], SATIRE [27], and Chaff [15]. The last two
solvers represent efficient implementations of the basic DLL
solver. Chaff, however, is currently known as the leading DLL-
based SAT solver. The goals of this set of experiments are to de-
termine: 1) the best of two SAT solvers, in which each solver’s
description is hidden; 2) the best of a variety of decision heuris-
tics; 3) the amount of explored search space for difficult CNF
instances; 4) the best of various conflict analysis techniques; and
5) an estimate of the number of satisfying assignments in a sat-
isfiable instance.

SAT Solver A Versus SAT Solver B Experiment:In this ex-
periment, several SAT solvers are provided. However, the user
has no knowledge of the internals of any of the SAT solvers.
Given a set of hard instances, the user is required to identify
the best solver in the shortest possible time. In general, the user
will need to run each SAT solver for a specified time or ran-
domly select a solver and hope that it is the best among all
others. Using the proposed method, however, can give an in-
sight to which solver performs best within the specified run time
limit. Table IV shows several results for various hard instances
from bounded model checking [3], microprocessor verification
[26], FPGA routing [16], and the DIMACS set [9]. We tested
each instance for 10 s using the following three SAT solvers
and options: standard DLL solver, Chaff with a fixed decision
heuristic, and Chaff with the default cherry.smj heuristic. The
results clearly indicate the superiority of the third solver for al-
most all benchmarks, due to the significantly high search space
coverage achieved in the given time limit. Fig. 5(a)–(b) shows a
detailed space coverage analysis of thebarrel5 instance for all
three solvers.

Comparison of Decision Heuristics:As shown in Table IV,
the proposed method can also be used classify decision heuris-
tics and rate their performance on various SAT instances. We
show the results for two decision heuristics: 1) static fixed [9]:
unresolved variables with minimum index are selected first for
decisions; 2) dynamic VSIDS [15]: variables that appear in the
highest number of clauses are selected first. (Some weight is
given to variables appearing in recent conflict-induced clauses).
Again, the results show the effectiveness of VSIDS as opposed
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TABLE IV
PERCENTAGE OFEXPLORED SEARCH SPACE FORVARIOUS SAT SOLVERS AND DECISION HEURISTICS. THE SEARCH RUN TIMES USING THE CHAFF [15]

SAT SOLVER ARE ALSO LISTED

Fig. 5. Search space coverage forBarrel5 instance. (a) Lower and (b) upper bounds are shown.

to the fixed decision heuristic within the specified run time
limit. Nevertheless, thek2_fix_gr_rcs_w9instance shows a
larger upper bound of the explored search space using the fixed
decision order as opposed to VSIDS. However, since the ranges
for both heuristics overlap, it is hard to identify the optimal
decision heuristic.

Postmortem on Difficult Instances:Table IV also shows
the small percentage of explored search space for the FPGA
routing instances for the given decision heuristics and SAT
solvers. Fig. 6(a) shows a detailed space coverage analysis of
thek2_fix_gr_rcs_w9[16] instance after unsuccessfully trying
to solve it with Chaff for up to 500 s. The fact that more than
55% of the search space is still not exploredmight suggest a
hard problem instance. In fact, the instance was still unsolved
after running Chaff for 10 h. Fig. 6(b) shows the space coverage
analysis of the9 vliw_bp_mc instance after unsuccessfully
trying to solve it with Chaff for up to 500 s. Since most of the
search space is explored, thismight suggest an instance with

a few satisfying assignments or an unsatisfiable instance. The
instance was proven to be unsatisfiable. Note that the size of
the covered search space does not correlate with the complexity
of exploring the rest of the search space. For example, Chaff
was successfully able to explore, after running for 10 s, more
than 99.9% of the search space for thebarrel6 and longmult6
instances. Yet, it solved the instances in 10.1 and 610 s,
respectively.

One UIP Versus All UIPs Conflict Analysis:Recently, an
analysis of various conflict-induced clause learning schemes
was reported in [28]. The authors found that different learning
schemes can significantly affect the behavior of SAT solvers.
Based on various EDA instances, they were able to demonstrate
that the learning scheme based on the first unique implication
point (UIP) [21] of the implication graph is more effective in
solving SAT problems than other schemes such as the “All UIP”
approach. In order to further confirm this conclusion, we plotted
the growth range, using the “All UIP,” “1 UIP,” and “0 UIP”
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Fig. 6. Search space coverage for the (a)k2_fix_gr_rcs_w9and (b)9 vliw_bp_mcinstances.

Fig. 7. Search space coverage of the unsatisfiablequeueinvar8instance using (a) the All UIP versus (b) 1 UIP conflict analysis learning schemes. The plots also
show the search space coverage when learning is disabled (0 UIP).

(clause learning is disabled) approaches for thequeueinvar8in-
stance from the bounded model checking set [3]. We imple-
mented all three approaches in SATIRE. Fig. 7 shows the runs
using the SATIRE SAT solver. The coverage percentage was
measured after each backtrack call. As the plot clearly shows,
the addition of all UIPs resulted in a minor benefit and perhaps
slowed the search process as additional time is spent to generate
all the UIP clauses. Furthermore, the instance was unsolved after
running SATIRE with disabled clause learning for 12 s. This de-
tailed analysis of the internals of the search process can provide
a better understanding of a problem’s structure and the effec-
tiveness of the SAT solver and enhancement being tested.

Number of Satisfiable Assignments:As mentioned earlier,
the search space will never be totally explored in “satisfiable”
instances as SAT solvers typically exit after identifying the first
satisfying assignment. However, in some cases several satisfying
assignments, if not all, are needed. An example is to identify all
possible primary input assignments for a circuit that would mini-
mize the total gate delay. An insight into the number of possible
satisfying assignments can be very helpful. A satisfiable instance
in which a satisfying assignment is identified at an early stage of
the search process is likely to have many satisfying assignments.
In contrast, an instance that identifies a satisfying assignment
after exploring almost the complete search space probably has
few satisfying assignments. In order to test our assumption, we
selected two satisfiable instances from the DIMACS set [9],

TABLE V
PERCENTAGE OFEXPLOREDSEARCH SPACE FORSATISFIABLE INSTANCESWITH

DIFFERENTNUMBERS OFSATISFYING ASSIGNMENTS

namely theaim-200–1_6-yes1–1andssa7552–160. The former
is known to have a single satisfying assignment, whereas the
latter represents a stuck-at-fault problem with many satisfying
assignments. Both instances were solved by Chaff in less than a
second. We measured the explored search space after the search
was completed for a single satisfying assignment. Table V shows
the results. As expected, the percentage of the search space
explored for theaim* instance was tremendously larger than
that of thessa* instance.

Again, as in the experiments in Section VI-A, the accuracy of
these results is significant. Although a user-specified error limit
of 20% is set, out of the 78 runs, 47, 6, 16, 8, reported results
with 100%, , , accuracy.

In terms of run time and memory consumption, constructing
the ZBDDs is fast and is usually dependent on the size of the
clauses. Furthermore, the high compression power of the ZBDD
data structure utilizes less memory than a list data structure [1],
[5], [14]. As mentioned in Section V-B, computing the search
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TABLE VI
ANALYSIS OF VARIOUS COVERAGE COMPUTATION TECHNIQUES INSATOMETER. EACH INSTANCE WAS TESTED FOR10 S USING CHAFF. SATOMETER’S

RUN TIME AND MEMORY LIMITS WERE SET TO 100 S AND 500 MB OF RAM. “T IME-OUT” AND “M EM-OUT” INDICATE TECHNIQUE

ABORTED DUE TO EXCEEDING RUN TIME AND MEMORY LIMITS, RESPECTIVELY

space coverage with an unrestricted bound is done by a single
traversal of the ZBDD. On the other hand, the restricted bound
and the exact count methods are slower, since additional ZBDD
nodes are created during the ZBDD traversal. The size of the
ZBDD, however, does not grow exponentially since the addi-
tional ZBDD nodes are removed as soon as the function sizes
of their corresponding formulas are computed.

One way to reduce the run time and memory consumption
is to only analyze conflict-induced clauses of sizeor less. In
general, smaller clauses are more useful in measuring the ex-
plored search space and require less ZBDD construction time
and fewer ZBDD nodes. This approach, however, can only be
used to measure the lower bound of the explored search space.
For the instances reported in Tables IV and V, Satometer was
able to compute the search space coverage for almost all in-
stances in less than a second each.

In order to further analyze the performance of Satometer,
we selected four instances from each family of benchmarks
in Table IV. Satometer was applied with various accuracy
settings to all four instances, after testing each instance for 10
seconds using Chaff with the default cherry.smj heuristic (i.e.,
the dynamic VSIDS decision heuristic.) The results are shown
in Table VI. The table also shows a comparison between using
ZBDDs and BDDs to compute the space coverage. The pre-
sented techniques were configured to analyze conflict-induced
clauses consisting of 50 literals or less. A cursory analysis of
the data suggests several observations.

1) The BDD-based approach without sifting [18], [23],
quickly runs out of memory for all instances. The use of
dynamic sifting reduces the memory usage but requires
longer run times to compute the space coverage. In fact,
the use of sifting with the BDD approach times out for
all four instances.

2) Representing CNF formulas with ZBDDs, on the other
hand, can be done with modest memory requirements and
faster manipulation run times. Although sifting is dis-

abled, ZBDDs never run out of memory for any of the
presented instances. Sifting is disabled in all of the pre-
sented experiments, since it slows down Satometer’s per-
formance.

3) The use of the “exact” computation times out for all in-
stances. This is mainly due to the addition of a significant
number of ZBDD nodes during the computation of the
space coverage.

4) The use of the “approximate” computation is the fastest
among all presented approaches, since a single traversal
of the ZBDD is required to compute the search space cov-
erage. The bound, however, can be inaccurate. For ex-
ample, the4-pipeandpar32–1-cinstances have errors of
37.5% and 49%, respectively.

5) Varying the “controlled accuracy” limit allows a trade-off
between accuracy and speed. In general, smaller error
limits require longer computation run times but yield ac-
curate results. The use of higher error limits speeds up the
computation, but can yield inaccurate results. Applying
Satometer with a 20% error limit successfully computed
the space coverage for all instances within reasonable run
times.

6) Our final observation is that even when a high error limit
is used, e.g., the approximate computation, two instances
report results with almost 95% accuracy.

VII. SUMMARY AND CONCLUSION

We described Satometer, a tool that measures the percentage
of search space explored by a SAT solver. The tool can provide
helpful diagnostic information, either during or at the conclusion
of a SAT run. We believe that tools such as this are needed to
complement the powerful SAT engines that have been developed
in recent years. We plan to identify other metrics that can help
characterize a search process (e.g., the maximum number of sat-
isfied clauses encountered at any point during the search), to look
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for ways to further improve the efficiency of Satometer (e.g., by
caching computation results), and to use it to analyze the perfor-
mance of solvers on hard SAT instances. We are also planning to
integrate Satometer into known SAT solvers and use the search
space information to improve decision and restart heuristics.
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