
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2015; 15:1851–1864

Published online 24 February 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/wcm.2471

RESEARCH ARTICLE

Real traffic logs creation for testing intrusion
detection systems
Wassim El-Hajj1*, Mustafa Al-Tamimi1 and Fadi Aloul2

1 Computer Science Department, American University of Beirut, Beirut, Lebanon
2 Computer Science and Engineering Department, American University of Sharjah, Sharjah, UAE

ABSTRACT

Port scanning is one of the most popular reconnaissance techniques that many attackers use to profile running services on a
potential target before launching an attack. Many port scanning detection mechanisms have been suggested in literature. To
test the proposed detection approaches, researchers use data sets that are available online or simulate their own. However,
the available data sets do not provide complete logs and are usually outdated. Furthermore, the simulated data sets provide
logs that do not resemble real-life scenarios. These deficiencies in the available data sets highly affect the performance
of testing the intrusion detection systems (IDSs) and result in poor evaluations. Meanwhile, very little work has been
done on generating port scanning benchmarks that researchers can use to test their detection methods. In this work, we
suggest a simulation framework using OMNeT++ to generate benchmarks that resemble real-life traffic. We approach the
problem by dividing it into three modules: (1) topology creation; (2) good traffic generation; and (3) bad traffic generation,
each of which are made realistic, similar to deployed and usable networks. The benchmark is then tested using Snort and
MalwareAnalysis. The tested IDSs were not able to catch many of the generated port scanning attacks, specifically the slow
and distributed ones. We also measured the attack detection efficiency of the IDSs under different loads of background
activities. Hence, the proposed framework and the annotated benchmarks will provide researchers and industry with an
effective way of testing the power of IDSs’ port scanning detection modules. Copyright © 2014 John Wiley & Sons, Ltd.

KEYWORDS

benchmark testing; computer security; intrusion detection; simulation

*Correspondence

Wassim El-Hajj, Computer Science Department, American University of Beirut, Beirut, Lebanon.
E-mail: we07@aub.edu.lb

1. INTRODUCTION

In networking, new protocols and systems are usually
tested, at least in the early stages, using simulations as
opposed to testing and troubleshooting using real sys-
tems [1]. Only when the simulation results are satisfactory,
implementation on real hardware is performed. Compared
with the cost and efforts spent in establishing a real testbed
environment, network simulators have proven to be rel-
atively fast, accurate, and inexpensive regardless of the
protocol being simulated or its layer [2]. Typical systems
that are tested via simulation include intrusion detection
systems (IDSs), which are used as a first line of defense
against intrusions.

Port scanning is one of the major reconnaissance
techniques that is used by the hackers prior to launching
an attack. It is a targeted form of information gathering
that attempts to profile the services that are running on a

potential target by probing the target for open ports [3].
While profiling the services, the attacker’s main aim is
to discover services with weak security or well-known
vulnerability. Finding such a service allows attackers to
perform malicious activities ranging from passive attacks
such as extracting secure information to active attacks such
as implanting viruses, worms, and Trojan horses in the net-
work. Although a scan is not an attack and does not harm
its targets, it is considered a highly invasive activity that
uncovers security loopholes and leads hackers to launch
successful attacks [4]. Therefore, detecting port scanning
activities at early stages will result in reducing security
breaches.

Intrusion detection systems are mainly designed to
gather and analyze information over a network and detect
any possible security breach such as port scanning and
other anomalous activities. Although IDSs do protect the
corporate network from many intrusion attempts, mali-
cious users are continuously finding new ways to bypass

Copyright © 2014 John Wiley & Sons, Ltd. 1851



Real traffic logs creation for testing intrusion detection systems W. El-Hajj, M. Al-Tamimi and F. Aloul

the IDS and get access into the internal network [3,4].
When used smartly, the activity of port scanning is an
example of such malicious actions that can deceive the IDS
and go unnoticed.

Because of the dangerous consequences of port scan-
ning, every IDS comes with a port scanning detection
module based on one of the following approaches: time-
based [5], connection-based [6], and machine learning [7].
However, by devising smart port scanning activities such
as slow port scanning or distributed port scanning, adver-
saries can still bypass the deployed IDSs, making this field
a challenging area for researches [8]. As a result, net-
work administrators must perform rigorous assessments
and tests to make sure that the IDSs protecting the cor-
porates do provide promising results as claimed by the
IDS vendors. Consequently, it is of vital importance to
develop a benchmark that enables vendors as well as net-
work administrators and researchers to effectively evaluate
and test IDSs.

The main aim of testing IDSs is to evaluate the hit rate
and false alarm ratio. The hit rate ratio determines the
level of correctly detected attacks, while the false alarm
ratio indicates the wrong alarms produced by the IDS.
Researchers consistently test their detection approaches
by using data sets that are available online [9]. A major
drawback of the available data sets is that they are out-
dated and do not contain specific information regarding
the number of attacks and their types. These deficiencies
in the available data sets highly affect the performance
of testing the IDSs and results in poor evaluations. One
such data set is KDD’99 [10], which was distributed since
October 1999 by the University of California, Irvine.
Currently, researchers perform these tests under simulated
environments, because of the high costs and risks involved
in testing under real environments [11]. The quality of
simulation results significantly depends on the simula-
tion environments that should resemble realistic behaviors.
Meanwhile, successful and effective evaluation of IDSs
requires overcoming several challenges summarized here-
after. One of the challenging tasks in testing IDSs is
collecting attack scripts. Although many attack scripts exist
online, it takes a considerable amount of time and effort
to adapt them in simulation. Moreover, these scripts are
produced by different developers to work in different envi-
ronments, hence adding more complexity when integrating
them into the simulated environment [11]. Another chal-
lenging task that is crucial in IDS testing is the generation
of background traffic that will be further discussed in
Section 2.

In this work, we develop a comprehensive framework
that generates benchmarks for port scanning testing. Our
proposed approach tackles all the hurdles in testing an IDS
and provides a realistic simulation environment (ReaSE)
that consists of three stages. We first create a topology that
can be easily extended to include normal as well as mali-
cious users. We then create the modules that simulate real
traffic and show via simulations that our generated normal
traffic resembles self-similar traffic and follows real traf-

fic patterns. Finally, we create the modules that generate
the port scanning attacks. The modules were designed and
implemented using the discrete event simulator OMNeT++
[2], which we believe can be used as a base simulator for
testing IDSs, because of its considerable functionality and
ease of use. It is to be noted that little work has been
done on developing benchmarks for port scanning. Most
researchers use for their testing, data from log files that do
not contain many port scanning activities or contain man-
ually generated port scanning traffic [3]. The rest of this
work is structured as follows: Section 2 briefly overviews
port scanning, challenges in testing IDSs, the used simu-
lator OMNeT++, and finally a summary of related work.
Section 3 explains our approach for creating the benchmark
by discussion of topology, background traffic, and attack
traffic. In Section 4, we present the results of testing our
benchmark. Section 5 concludes the paper and presents the
future work.

2. BACKGROUND AND
RELATED WORK

The purpose of this section is to provide the reader with
some background information in port scanning, IDSs, and
the simulation environment. We first explain the activity
of port scanning and the most used techniques by hack-
ers. Later, we mention the challenges in providing proper
background traffic to test the IDSs and explain briefly the
different types of IDSs. Next, we highlight our simulation
environment: OMNeT++. Finally, the recent related work
is discussed.

2.1. Port scanning

Port scanning is one of the most common and consider-
able techniques for discovering an open door (port) in a
system that allows the intruder to launch malicious attacks
through the discovered port. In this method, the adversary
may use different types of port scanning approaches, such
as SOCKS port probe, stealth scan, bounce scan, Trans-
mission Control Protocol (TCP) scan, and User Datagram
Protocol (UDP) scan [3]. The detection methodologies to
these types of scans have been the main focus for IDSs,
because prevention of such activities is the most cru-
cial step to stop an attack. Although several approaches
were proposed to detect port scanning attacks, the adver-
saries have been developing new techniques to avoid the
detection of their activities, therefore, making this field an
important area for security researchers.

In order to generate the attack traffic, first, we take an
insight into the port scanning activity. Basically, there are
65 536 standardly defined ports on a computer that are clas-
sified into three ranges: (1) well-known ports (0–1023);
(2) registered ports (1024–49151); and (3) dynamic/private
ports (49152–65536) [12]. Computers connected to a net-
work exploit many services that use TCP/UDP protocols
by connecting through these ports. Essentially, a port scan-
ner sends a message to each port and waits for a certain

1852 Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



W. El-Hajj, M. Al-Tamimi and F. Aloul Real traffic logs creation for testing intrusion detection systems

response. Depending on the received response, the port
scanner can discover whether the port is closed or being
used and further continue discovering the weakness to
exploiting the offered service. Most of the port scanning
activities use TCP that is based on a connection-oriented
protocol and provide scanners with trustworthy results.
However, some of the port scan activities may use UDP
that is based on a connectionless service. The drawback
of using UDP is that it can be easily blocked by firewalls
and may not return consistent information because of the
connectionless type of services [12].

A TCP connection is established by a three-way hand-
shake that is explained in Figure 1, and the listening
application (server) is informed only when the hand-
shake is successful. When a user initiates a connection,
it first sends a TCP packet that carries an Synchronous
(SYN) flag. If the port is open on the server side,
then it will respond with a TCP packet containing the
Synchronous/Acknowledgment (SYN/ACK) flag after
which the initiating user will respond with a TCP ACK
message, and finally, the connection is established. In
case the port is closed, the server will reply with a TCP
containing Reset (RST) flag [13].

The following are some of the mostly used and well-
known port scanning attacks that use TCP [3]. They are
also summarized in Table I.

� Connect scan: A TCP Connect scan completes the
three-way handshake, and after a successful attempt,
it is logged as a connection. It is the easiest type
of attack to perform because it does not require root
privileges. The port is considered open when the con-
nection is established and closed otherwise. If the
connection is successful, the attacker sends a Finish

(FIN) packet to end the connection. This type of scan
is usually recorded in the log file of the server.

� SYN scan: It is considered the most popular type of
port scanning and usually referred as TCP half Con-
nect scan. The scanner initiates by sending a SYN
packet, and after receiving SYN/ACK (open port), the
attacker responds with RST in order not to complete
the three-way handshake. Therefore, the scan does not
show up in the application level logs because the con-
nection is not established. This process is also referred
to as stealth scan given that it is usually not recorded
in the log files.

� FIN scan: This type of attack is used when the net-
work firewall drops all SYN–ACK packets to the
closed ports. The firewall however allows all inbound
packets with FIN; hence, the scanner sends a FIN
packet to the destination, and upon receiving an RST
response, it means the port is closed. If the port is
open after sending a FIN, there will be no response.
This process is usually not recorded in the log files of
the server.

� ACK scan: Whenever a scanner wants to determine
filtered ports by the firewall, it initiates an ACK scan.
If the response is RST, then the remote port is unfil-
tered and is accessible. However, when there is no
response, this indicates that the port is filtered by the
firewall. This process is usually not recorded in the
log files of the server.

Port scanning can be classified into two broad cate-
gories: single-source (one-to-many) port scans and dis-
tributed (many-to-many or many-to-one) port scans.
Distributed port scanning is the kind of scanning where
the intruder launches a coordinated scan distributed among

Figure 1. Transmission Control Protocol three-way handshake. (a) The three-way handshake with an open port. (b) Connection attempt
on a closed port.

Table I. Summary of the most popular port scanning attacks.

Scan technique TCP flag Response open Response close Firewall detection

Connect scan SYN ACK RST Yes
SYN scan SYN ACK RST No
FIN scan FIN NO RST No
ACK scan ACK NO RST No

Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd. 1853
DOI: 10.1002/wcm



Real traffic logs creation for testing intrusion detection systems W. El-Hajj, M. Al-Tamimi and F. Aloul

multiple parties. Each party selects a set of the available
ports and scans them. The attacker then collects the scan
results from every party. Such an attack has many simi-
larities with distributed denial-of-service attacks that have
long been a challenge to the research community [12].

Next we briefly explain the IDSs and the difficulties in
testing them under different background activities.

2.2. Intrusion detection systems

Intrusion detection systems are designed specifically to
gather and analyze information over a network and detect
any possible security breaches [1,14,15]. IDSs are usually
used as a first line of defense against intrusions. Every
commercial IDS comes with a port scanning detection
module based on one of the following approaches: time-
based [3], connection-based [4], and machine learning [5].

In terms of detection approaches, IDSs are classified
into three categories: signature-based, anomaly-based, and
specification-based systems. The signature-based detec-
tion, also known as the misuse-based detection, attempts
to recognize attacks that follow certain intrusion pat-
terns. Such patterns are typically collected from previ-
ously known attacks. However, this approach is ineffective
against previously unseen attacks. On the other hand,
anomaly detection can be identified by recording unusual
behavior of operations. If such operations are sufficiently
different from known normal behaviors, then they are con-
sidered as abnormal traffic hence as assaults. This method
can detect unknown attacks yet can produce false alarms
for legitimate but previously unseen behaviors.

Specification-based detection combines the strength of
signature-based (accurately detecting known attacks) and
anomaly-based (detecting unknown) by manually specify-
ing program behavior specification. A hybrid lightweight
IDS was suggested in [16].

The main aim of testing IDSs is to evaluate the hit rate
and false alarm ratio comprehensively. The hit rate deter-
mines the level of correctly detected attacks, while false
alarm ratios indicate the mistaken alarms produced by the
IDS. Most IDS testing approaches can be classified into
one of the four environments depending on the background
traffic generation patterns:

(1) No background traffic: In this approach, the IDS
is deployed to only capture and analyze the attack
scripts without any background activity. The eval-
uation metrics used are attack detection accuracy
and hit rate precision. However, in this approach,
it is impossible to evaluate neither the false alarms
nor the robustness of the IDS under high levels of
background activities [17].

(2) Real background traffic: Testing in real environment
with realistic background traffic is very effective in
finding the hit rate and false alarm ratio because
of the background activity. However, it is impos-
sible to guarantee the identification of all attacks
because there is no prior knowledge about hidden

ones. Another major drawback of such approach
is that the data cannot be distributed because of
privacy concerns [18].

(3) Sanitized background traffic: In sanitization, all the
sensitive data are removed from a realistic traf-
fic log, in order for it to be distributed and ana-
lyzed freely without any concerns regarding privacy
issues. After sanitization, attack traffic is injected
for testing the IDS. However, this sanitization may
remove essential information that is needed for the
attack detection and might rule the traffic as unreal-
istic [19].

(4) Generated background traffic: In this approach, the
background traffic is generated by complex traffic
generators that model realistic traffic behavior [20].
Because it is guaranteed that the generated traffic
does not contain any unknown attack, it yields to a
precise evaluation of false alarms and hit rate ratio.
One more advantage of this approach is that the tests
can be repeated by generating the same traffic again.
However, the main challenge remains: to make
sure that the generated traffic resembles realistic
scenarios.

In this work, we adopt the last environment and develop
a comprehensive framework that generates benchmarks for
port scanning testing. The generated traffic between hosts
resembles realistic traffic patterns that will yield meaning-
ful and accurate evaluation results. The details of traffic
generation are further explained in Section 3. We next
highlight the network simulator OMNeT++, which is used
in our simulations.

2.3. OMNeT++ simulator

OMNeT++ is a discrete event simulator that is based on
hierarchical nested modules. These modules communicate
using messages through channels. Simple modules lie at
the lowest level of the hierarchy and combine one or more
C++ classes that describe the algorithm and functionality.
Compound modules consist of one or more simple modules
and define the interconnection among them. Moreover, the
compound modules can be interconnected through incom-
ing and outgoing gates called channels. OMNeT++ models
are often called systems that are at the top level of the
hierarchy, and each system contains simple and/or com-
pound modules where each compound module consists of
multiple simple modules as shown in Figure 2.

Each simulation program consists of the following four
components:

� Simple module source that is implemented in C++
using the OMNeT++ simulation class library. These
source files contain the algorithm of the simple mod-
ule and have (.cc) and (.h) suffixes.

� Network description that specifies the topology of
module connections using the NEtwork Description
(NED) language and is saved in specific files with

1854 Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



W. El-Hajj, M. Al-Tamimi and F. Aloul Real traffic logs creation for testing intrusion detection systems

Figure 2. OMNeT++ model structure.

(.ned) suffix. This file sets the structure and parame-
ters of simple modules, compound modules, channels,
connections, and network definitions.

� Messages is an instance of cMessage class of
OMNeT++ that represents events, messages, packets,
or other entities in a simulation. It is created using the
message class in OMNeT++ with (.msg) suffix, and it
is sent from one module to another with specific types
and structure.

� Initialization file with (.ini) suffix contains the general
settings for the execution of the simulation. It also sets
values to the parameters included in the NED file that
will specify the traffic type and simulation behavior.

OMNeT++ offers variety of services for specialized
areas. The INET framework is amongst the very well-
known extensions that support simulations of the common
Internet protocols such as TCP, Internet Protocol (IP),
UDP, and Internet Control Message Protocol (ICMP) along
with other services such as Packet Capturing. The details
of each implemented protocol can be found in the corre-
sponding Request for Comment document [21].

2.4. Related work

In recent studies, researchers have proposed several ways
to test IDSs under various environments such as real back-
ground traffic, no background traffic, or generated back-
ground traffic. For real background traffic, different data
sets have been used for testing purposes. The authors in
[22] publicly released internal enterprise traffic, known as
Lawrence Berkeley National Laboratory data sets (LBNL)
that span more than 100 h of activity over a total of several
thousand internal hosts. The main applications observed
were web, mail, and name services. Meanwhile, the traffic
was anonymized to ensure that user privacy is preserved.
The LBNL attack traffic mostly consists of malicious
nodes that perform TCP port scans, which are targeted at
LBNL hosts. In [3], a data set known as endpoint back-
ground traffic was presented. The data set consists of data
exchanged in home and university environments. Because
home computers are usually shared among multiple users
and run peer-to-peer applications, they generate signifi-
cantly higher traffic volume than university computers. The
attack traffic was mostly composed of outgoing port scans,

as opposed to LBNL traffic where attack traffic is inbound.
In [23], the authors gathered real traffic traces from a dor-
mitory at Seoul National University to test their proposed
port scanning detection method. They used a fast increase
slow decrease scheme that automatically and adaptively
sets the port scanning detection threshold, on the basis
of traffic statistical data during prior time periods. The
proposed method outperformed Snort [5], BRO [24], and
Threshold Random Walk.

In [25], the authors created a port scanning testbed using
Defense Technology Experimental Research network that
uses EMULAB software [26]. DScan [27] and NSAT [28]
scanner tools were then used to perform distributed port
scanning activities. The testbed was used to evaluate the
proposed detection algorithm that is based on solutions to
the set covering problem [29]. The algorithm successfully
detected strobe scan (scanning multiple ports on multiple
hosts) and horizontal scans (scanning a specific port on
multiple hosts) against contiguous address space. In [2],
the authors created their own port scanning benchmark in
OMNeT++ using uniform distribution of traffic. The data
was used to test the proposed Voice over Internet Proto-
col IDS. However, the generated traffic did not convey a
realistic behavior to test the false alarm ratio.

In [30], the authors built a model called ReaSE that
is developed on top of INET framework (an extension of
OMNeT++), hence inheriting the advantages of simulat-
ing the Internet protocols such as TCP/IP. ReaSE creates
a ReaSE by considering multiple aspects of network sim-
ulations such as topology generation and realistic traffic
patterns. The generated traffic resembles realistic traf-
fic and exhibits self-similar behavior. However, ReaSE
is not being updated to be compatible with the recent
INET framework that supports recent protocols [31]. In our
approach, we borrow some of the concepts from ReaSE
along with hand crafted concepts to create and incorporate
extra modules into INET framework to be able to generate
realistic traffic while embedding port scanning activities
within the generated traffic.

3. BENCHMARK FRAMEWORK
COMPONENTS

In network evaluation, a standard simulation must define
the topology of the network and traffic patterns of the sim-
ulated hosts along with anomalous nodes. In this section,
we detail our approach to developing port scanning bench-
mark with realistic logs. First, we explain the suggested
network topology and what is the state of the art in gen-
erating different topologies. Then, we detail the traffic
generation methodology. We end the section by describing
the bad traffic (port scanning) generation and analyzing the
generated benchmark.

3.1. Network topology

To generate realistic topologies, two approaches are mainly
used [30]. The first approach is based on observing real-

Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd. 1855
DOI: 10.1002/wcm



Real traffic logs creation for testing intrusion detection systems W. El-Hajj, M. Al-Tamimi and F. Aloul

life scenarios collected from Border Gateway Protocol
(BGP routing data) or RouteViews project [32]. The main
drawback of real observations is that the collected data
are not easily integrated with the simulator given the
heavy load of data. Moreover, the observed data are not
updated on the basis of current topologies [30]. The second
approach relies on random topology generation. However,
random networks do not accurately model real topologies
because major parameters such as link metrics and internal
BGP configurations are often ignored [33]. Even with this
drawback, the research community heavily uses random
topology generation that depends on power-low distribu-
tion [33]. In this random approach, few nodes contain lots
of edges resembling the core network, while the rest of the
nodes have few edges resembling hosts and routers. The
communicating links between nodes have different para-
metric values to resemble realistic network topology. For
instance, the link bandwidth between core and gateway is

Figure 3. Network topology connecting Autonomous Systems.

larger than the link bandwidth between gateway and edges.
Meanwhile, the connectivity decreases from edges along
the cores. In OMNeT++, the INET framework is capable
of generating such random topologies. However, it does
not take into account the realistic parametric values in link
speeds and routers. Another option for topology genera-
tion is BRITE [34], which can be integrated with NS-2
and OMNeT++. In summary, most existing random topol-
ogy generators are based on Positive-Feedback Preference
that randomly implements power-low distribution to the
nodes [35].

Generation of realistic topology is based on Autono-
mous System (AS) (a network under a single administra-
tive authority) that includes single or multiple domains.
Under each AS, the router-level topology or subnets can
be further specified. In ReaSE, the generation of realistic
topologies is divided into two parts because of the hier-
archical structure of the Internet. First, the connection of
AS level with multiple separate domains is established
as shown in Figure 3. Second, generation of router-level
topology under each AS is performed. The router-level
topology varies from a two-tiered to three-tiered canoni-
cal structure based on the requirements of a domain. The
three-tiered structure consists of core, gateway (aggregate),
and edge routers as shown in Figure 4. In a two-tiered
structure, the core and gateway routers are collapsed in
one tier and hence a two-tiered structure consists of core
and edge routers only. This method is based on Positive-
Feedback Preference that randomly implements power-low
distribution to the nodes [12]. The Internet can be seen as
connecting ASs together with different specifications [35].

Figure 4. Router-level topology with a canonical three-tier structure (core, gateway, and edge).

1856 Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



W. El-Hajj, M. Al-Tamimi and F. Aloul Real traffic logs creation for testing intrusion detection systems

Table II. Links properties in the proposed topology.

Router level Link speed Router level

Core <- - - - 40 Gbps - - -> Core
Core <- - - - - 20 Gbps - - - -> Gateway
Gateway <- - - 10 Gbps - - -> Edge
Edge <- - - - 2.5 Gbps - - - -> Server
Edge - - 100 Mbps - - -> Host
Host - - 100 Mbps - - -> Edge

The cores that represent the largest and most capable
routers are all connected to each other through very high-
speed links, especially because they are used to connect
together the various ASs. Furthermore, each core connects
to few gateway routers via high-speed links (for instance,
in Figure 4, UniversityCore connects to University gate-
ways, UNgw1 and UNgw2) and each gateway connects to
multiple edge routers. Finally, the edges connect to several
hosts with lower speed links. Figure 4 represents a canoni-
cal three-tiered router-level topology, and Table II presents
the chosen parameters for link metrics. The second row of
Table II (Core< - - - - 40 Gbps - - - >Core) can be read
as follows: bi-directional links with a speed of 40 Gbps
connect core routers. The last row means that hosts con-
nect to edge routers via unidirectional links with a speed of
100 Mbps. It is to be noted that, in the year 2000, the speed
of the links connecting core routers was around 2.5 Gbps
and this number increased to 10 Gbps a few years later.
As of the year 2012, the typical link speed connecting core
routers became 40 Gbps [36].

In our simulation environment, we have adopted one
of the random topologies generated by ReaSE and mod-
ified the nodes and links characteristics to fit realistic
networks. This environment includes four ASs that resem-
ble University, Private Enterprise, Cloud Data Centers,
and Peer-to-Peer networks. The specifications of each AS
have been gathered from the studies conducted by Benson
et al. [35] and follow the two-tier and three-tier structures.
We connect these four ASs in such a way that all the exter-
nal attacks are launched from the Peer-to-Peer AS to the
three other ASs. On the other hand, each of the Private
Enterprise and University ASs includes inbound attacks
from their internal domains. The canonical structure of the
University AS is a two-tiered topology while the Cloud
Data center and Private Enterprise are three-tiered struc-
tures. Figure 5 presents a high level view of the proposed
topology connecting the four ASs, while Figure 6 presents
the more detailed topology. The Peer-to-Peer AS consists
of two scanners that perform fast scan and tricky scan,
respectively, three slow scanning hosts that launch slow
scans using different timing pattern, and four hosts that
launch subtle slow and distributed port scans. The details
of each attack along with the scenarios will be explained
in Section 3.3 of this paper. Moreover, there are two arrays
of normal users (j and k) that produce realistic traffic and
connect to Cloud, University, and Private Enterprise. The
parameters j and k vary depending on the load of traffic we
plan to generate so that we can test the performance of the

Figure 5. Connecting all Autonomous Systems (Peer to Peer,
University, Cloud, and Private Enterprise).

IDSs under stressful conditions. Hence, the attacking nodes
also generate normal traffic in addition to the attack traffic.

3.2. Traffic generation

Having created the appropriate topology, it is important to
make sure that the traffic generation between hosts resem-
bles realistic traffic patterns in order to get meaningful and
accurate evaluation results. Creating such patterns requires
the generation of self-similar behavior [25], which is based
on a reasonable combination of multiple kinds of traffic.
The following tools are among the well-known traffic gen-
erators that can produce self-similar traffic patterns: ReaSE
[30], BonnTraffic [20], TrafGen [13], and D-ITG [37]. One
possibility to achieve self-similar traffic behavior is to use
multiple traffic sources that are switched on and off on the
basis of heavy-tailed intervals [38]. Another possibility is
to produce traffic at packet level by replicating appropri-
ate stochastic processes for both inter-departure time (IDT)
and packet size random variables (exponential, uniform,
Cauchy, normal, Pareto, etc.) [37].

Many studies have been done in analyzing the behav-
ior of network traffic [39,40]. Recently, new models
of generating network traffic have been developed [41]
(Pareto, Weibull) that are different from the traditional
traffic models such as Poisson and Markov. Poisson is
a discrete probability distribution that was used in mod-
eling the telephone networks, and because of its good
approximation in telephony systems, some researchers
adopted this method to produce network traffic until
Pareto or Weibull distributions were introduced. Pareto is
a power law probability distribution that is named after
the famous Italian economist Vilfredo Pareto. Nowadays,
self-similarity [25] is the most well-known and used model
to generate network traffic that exhibits burst behavior in
different time scales in contrast to the smooth model of
Poisson distribution.

According to [39] and [40], the definition of self-
similarity is referred to standard time series of having X to
be a covariance stationary stochastic process where

Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd. 1857
DOI: 10.1002/wcm



Real traffic logs creation for testing intrusion detection systems W. El-Hajj, M. Al-Tamimi and F. Aloul

Figure 6. Proposed topology in details.

.Xt, t D 0, 1, 2, .., N/ (1)

where N is the number of observations.
With mean � and finite variance �2: (E[x] is the

expected value of x, also known as mean of x)

� D EŒXt� (2)

�2 D E
h
.Xt � �/

2
i

(3)

with an auto correlation function r.k/ that depends only
on k

r.k/ D
c

�2
D

EŒ.Xt � �/ .XtCk � �/�

E
�
.Xt � �/2

� (4)

where k D 0, 1, 2, .., N
We assume X has an asymptotic mean tor.k/ :

r.k/ Š k�ˇL1.k/ (5)

k!1, 0 < ˇ < 1

The value of L1.k/ gradually changes when its limit is
taken to infinity:

limt!1
L1.tx/

L1.t/
D 1 for all X > 0 (6)

The value of L1 at (t) is a constant, L1.t/ D log.t/

In order to measure the self-similarity behavior, the
Hurst parameter H is defined as follows:

H D 1 �
ˇ

2
(7)

Hurst parameter highly depends on parameter ˇ of
Equation (5). If the value of H is between 0.5 and 1, then it
is considered a self-similar distribution [41].

0.5 < H < 1 (8)

This behavior is known as long-range dependence where
it is characterized by having a slowly decaying autocorre-
lation r.k/ (Equation 5), which is in contrast to the short-
range dependence distribution of Poisson and Markov
models. The long-range dependence process is achieved
by relying on heavy-tailed distributions such as Pareto and
Weibull that have a hyperbolic shape. On the other hand,
the short-range dependence is described by light-tailed dis-
tributions such as exponential that decay exponentially
over the distribution.

Among the well-known traffic generators, ReaSE and
TrafGen both use exponential distribution in order to gen-
erate network traffic. ReaSE combines both mentioned
mechanisms (multiple traffic sources and packet-level
modification) and adopts a reasonable mixture of different
protocols based on TCP, UDP, and ICMP to create eight
different traffic profiles and assign a selection probability
to each one of these profiles. On the other hand, TrafGen
focuses on the parametric configuration of the hosts such

1858 Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



W. El-Hajj, M. Al-Tamimi and F. Aloul Real traffic logs creation for testing intrusion detection systems

Table III. Traffic sources with different flow percentages.

Traffic source Protocol Flow (%)

HTTP traffic TCP 60%
FTP traffic TCP 10%
Telnet traffic TCP 10%
Echo traffic TCP 10%
UdpBurst traffic UDP 5%
Ping traffic ICMP 5%

TCP, Transmission Control Protocol; UDP, User Datagram Protocol;
ICMP, Internet Control Message Protocol.

Figure 7. Main parameters in traffic generation.

as IDT, packet size, on length, and off length to generate a
self-similar traffic pattern.

In OPNET [42], which is a commercial version of
OMNeT++, there are built-in functions that produce Pareto
and Weibull distributions. These libraries are also within
the OMNeT++, and we will be using Pareto to gener-
ate self-similar traffic. Our traffic generation module is
inspired from both TrafGen and ReaSE, where the impor-
tant parameters are extracted from each and integrated into
our framework. We created in OMNeT++ traffic genera-
tion modules that include the parameters used in ReaSE
and the parameters currently used in INET framework. We
manually configured the hosts to incorporate the proto-
cols presented in Table III. The table also shows the traffic
sources along with the traffic flow percentage. Hence, this
approach is different from that used in ReaSE, which
adopts a random traffic selection approach.

In our implementation, the generated traffic consists of
variable traffic pattern that is achieved by configuring the
numeric parameters to random or fixed values in the ini-
tialization file (.ini). Moreover, we use different TCP and
UDP applications such as Telnet, Hypertext Transfer Pro-
tocol (HTTP), File Transfer Protocol (FTP), and UDP to
make use of multiple traffic sources. For that, we use the

Table V. Parametric analysis of Telnet traffic.

Parameters Mean Distribution

Number of commands 10 Exponential
Command length 10 bytes Pareto
CommandOutput length 40 bytes Pareto
Think time 2 s Exponential
Idle interval 3 s Lognormal,

truncnormal
Reconnect interval 30 s fixed

recent INET framework that provides different TCP and
UDP applications. One such application is TCPBasicClien-
tApp, which produces HTTP and FTP traffic. The behavior
of each application is defined by setting packet size and
IDT of the parameters as shown in Figure 7.

The numeric parameters have been taken from analyzing
different traffics in real-life scenarios. Table IV presents the
analysis of HTTP traffic behavior based on a study by [43].
The use of such parameters can be integrated into our sim-
ulator by specifying corresponding distribution functions
such as lognormal, Weibull, and Pareto. For instance, we
use Pareto .˛, X/ distribution in assigning the request size
by making ˛ D 1 (shape parameter) and X D 360 B (Mean
of the HTTP request size).

According to [45], the FTP numeric parameters such
as think time, idle interval, and reconnect interval are the
same as HTTP, while request size, reply length, and num-
ber of requests vary to 20 bytes, 1 000 000 bytes, and 3,
respectively [46]. The numerical parameters correspond-
ing to Telnet are different from those of HTTP and FTP
because its traffic behavior is not similar. In [44], the anal-
ysis of Telnet traffic shows that the IDT is represented by
an exponential distribution while the size of data follows
a Pareto distribution. In Table V, we present the assigned
numeric values to our parameters.

The other applications such as ping, Udpburst, and Echo
traffic are taken from the built-in applications in the INET
framework of OMNeT++.

Figure 8 demonstrates a sample traffic pattern gener-
ated by our traffic generation module. The traffic consists
of TCP, UDP, and ICMP packets. The number of packets
varies from a minimum of 50 to a maximum of 590 packets
at a time. More than 420 000 packets were injected from
a total of 90 hosts. Figure 8 represents the captured traffic
at Precision Time Protocol (PTP) core router that con-

Table IV. Parametric analysis of Hypertext Transfer Protocol traffic.

Parameters Mean Median SD Distribution

Request size 360.4 bytes 344 bytes 106.52 Pareto
Reply length 2000 bytes [44] — — Pareto
Think time 0.86 s 0.17 s 2.15 Exponential
Idle interval 39.45 s 11.71 s 92.57 Weibull
Reconnect interval 30 s [44] — — Fixed
Number of requests 1.74 1 1.74 Lognormal, truncnormal

SD, standard deviation.

Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd. 1859
DOI: 10.1002/wcm



Real traffic logs creation for testing intrusion detection systems W. El-Hajj, M. Al-Tamimi and F. Aloul

Figure 8. Traffic generation behavior using our module (packet count vs. time in seconds).

Figure 9. Peer-to-Peer Autonomous Systems including the malicious nodes.

nects the Peer-to-Peer AS to the whole network. This figure
presents the variation in traffic behavior and contains many
bursts in the timescale, which resembles self-similarity.
These data are in accordance with the parameters presented
in Table III.

In order to test the self-similarity of traffic and its realis-
tic behavior, we analyzed the generated traffic in Wireshark
[47], which is a known network protocol analyzer, and
obtained compatible results compared with the data in
Table III with 0.05% error in having malformed pack-
ets (118 packets). Moreover, we calculated the Hurst (H)

[41] parameter of our traffic, which is used as a metric to
show self-similarity in processes, and proved our result by
ranging from 0.7 to 0.8.

3.3. Attack traffic

In our implementation of the attack traffic, we mod-
ified the INET tcp source files (TCPConnection.h,
TCPConnectionBase.cc, TCPConnectionRcvSegment.cc,
TCPConnectionUtil.cc, TCPConnectionEventProc.cc, and
TCP.cc) to launch Connect, SYN, and FIN port scanning

1860 Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



W. El-Hajj, M. Al-Tamimi and F. Aloul Real traffic logs creation for testing intrusion detection systems

attacks that are explained in Section 2. In our used simula-
tion topology (Figure 9), we divide the attackers into three
groups of normal scan, slow scan, and distributed-slow
scan, which probe a range of 200 ports each.

(1) Normal scan It is the activity of sending consecu-
tive messages to scan a range of ports. We divide
the scanners into fastScanner and trickyScanner to
produce different behaviors. The fast scanner sim-
ply launches the scan in a consecutive way, while the
tricky scanner initiates eligible connections between
the scans so that it goes undetected. One scenario of
launching tricky scan is starting authorized connec-
tions after three consecutive scans and keep sending
data until the next probe.

(2) Slow scan It is the kind of scanning where the
intruder sends a probe to a certain port and waits
for some time before sending the consecutive probe.
This waiting time, chosen appropriately via test-
ing, makes the traffic resemble normal behavior and
thus deceiving most IDSs. We perform three differ-
ent waiting timing approaches to test the detection
of our IDSs. In Figure 9, slow1 uses a 10-s time
interval between each probe, while slow2 and slow3
launch their scans in 15-s and 30-s time intervals
respectively.

� Slow1 – 10 s time interval
� Slow2 – 15 s time interval
� Slow3 – 30 s time interval

The selection of time interval highly depends on
the number of port scans that is acquired by the
attacker. Table VI estimates the amount of time
elapsed in probing the given number of ports in hours
with different time intervals. The number of ports
is divided into well-known, registered, and dynamic
ports that are 1024, 48 128, and 16 385 ports respec-
tively.

(3) Distributed scan Distributed port scanning is the kind
of scanning where the intruder launches a coordi-
nated scan distributed among multiple parties. Each
party selects a set of the available ports and scans
them. The attacker then collects the scan result from
every party. Such an attack has many similarities with
distributed denial-of-service attacks that have long
been a challenge to the research community. In our
used topology (Figure 9), we have four hosts named
Distributed1, 2, 3, and 4 that launch coordinated
scan, which cover a range of 200 ports divided among
them. We also devised a tricky distributed scan that
initiates authorized connections between scanning
activity to make this approach a more challenging
scan.

(4) Distributed and slow scan Detecting distributed port
scanning remains to be a difficult task, but when com-
bined with slow port scanning, the problem becomes
even more challenging. In our used topology, Dist-

Table VI. Slow scanning time estimate for probing ports in
hours.

Time
interval Well-known Registered Dynamic All
(s) 1024 (h) 48 128 (h) 16 385 (h) 65 536 (h)

5 1.42 66.84 22.76 91.02
10 2.84 133.69 45.51 182.04
15 4.27 200.53 68.27 273.07
20 5.69 267.38 91.03 364.09
30 8.53 401.07 136.54 1546.13
60 17.07 802.13 273.08 1092.27

Table VII. Distributed and slow scanning time estimate for
probing ports in hours with four scanning hosts.

Time
interval Well-known Registered Dynamic All
(s) 1024 (h) 48 128 (h) 16 385 (h) 65 536 (h)

5 0.36 16.71 5.69 22.76
10 0.71 33.42 11.38 45.51
15 1.07 50.13 17.07 68.27
20 1.42 66.84 22.76 91.02
30 2.13 100.27 34.14 136.53
60 4.27 200.53 68.27 273.07

Slow1, 2, 3, and 4 (Figure 9) launch a coordinate
slow scan with 5 s time interval between each scanner
host that probes a range of 200 ports. For instance,
DistSlow1 starts by scanning port 80, then after 5 s,
DistSlow2 scans port 81 and so on.

� DistSlow1 – 80, 84, 88, . . .
� DistSlow2 – 81, 85, 89, . . .
� DistSlow3 – 82, 86, 90, . . .
� DistSlow4 – 83, 87, 91, . . .

By devising distributed-slow scan, the attackers
can probe larger scale of ports in a faster amount of
time compared with only slow scanning. Table VII
gives an estimate of probing time in hours with four
scanning hosts in different time intervals.

4. TESTING RESULTS

To create the benchmark, we launch the mentioned attacks
in Section 3 along with normal traffic generated from Peer-
to-Peer AS (Normal1[j] and Normal2[k], where j and k
vary from low to high depending on the load of traffic) to
three different network environments that are Cloud AS,
University AS, and Private Enterprise AS. The same types
of attacks are launched to all the ASs with different back-
ground activity that vary from low and medium to high load
of traffics in order to test the detection approach and robust
performance of the IDSs.

The IDS should protect the network from inbound and
outbound connections to make sure no adversary bypasses

Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd. 1861
DOI: 10.1002/wcm



Real traffic logs creation for testing intrusion detection systems W. El-Hajj, M. Al-Tamimi and F. Aloul

Table VIII. Comparison between snort and MalwareAnalysis in
scan detection.

Scan type Snort MalwareAnalysis

Slow1 (5 s) Detected Detected
Slow2 (10 s) Not detected Detected
Slow3 (15 s) Not detected Not detected
Slow4 (30 s) Not detected Not detected
Distributed Detected Detected as scan

as distributed
Distributed tricky — —
DistSlow1 (5 s) Not detected Detected
DistSlow2 (5 s) Not detected Not detected
+ tricky
DistSlow3 (10 s) Not detected Detected
DistSlow4 (10 s) Not detected Not detected
+ tricky

its security protocol. Keeping this measurement in mind,
we kept the simulation running for 20 min while recording
the log on different routers such as UnEdge1&2, Cloud-
Core, and PEgw1&2 because they connect the servers to
internal and external hosts and can be visualized as the
IDS ideal position. Moreover, we analyze the recorded log
in the PCAP format using MalwareAnalysis [48] (PCAP
and traffic analyzer) and Snort [5] (a free IDS) under
Ubuntu 12.04.

In Table VIII, we summarize the comparison of Snort
and MalwareAnalysis in detecting different port scanning
activity. MalwareAnalysis and Snort were able to success-
fully detect all the port scanning attacks launched from
normal scanners; however, Snort was not able to detect
any of the slow scans. In MalwareAnalysis, the slow scan
performed by Slow1 (10 s interval) was easily detected,
while the other two slow scanners Slow2 and 3 went
unnoticed. The distributed scans were detected in Snort as
distributed approach, while in MalwareAnalysis, it was just
considered as a scan.

With the Distributed tricky approach in which we initi-
ate eligible connection between scans, the detections were
variable based on number of scans between each eligible
connection. In distributed and slow scanning, the results
showed that MalwareAnalysis raised an alarm due to its
flow-based [3] approach in detecting anomalous activities,
which relies on checking the log within a specified time
window and not on tracking traces of packets. This way,
when there are many port scans within its time window,
then they can be detected easily. To tackle this detection
approach, we also devise a tricky version of distributed and
slow to let our scans go unnoticed.

In Table IX, we show the robust performance of Snort
and MalwareAnalysis with different loads of traffic in
the background activity. These loads vary from low and
medium to high loads of traffic. Our results show that Snort
analyzes the traffic much faster than MalwareAnalysis.
However, in terms of accuracy, MalwareAnalysis detects
more port scans than Snort. Consequently, our log is capa-
ble of testing the robust performance, which is an important

Table IX. Robust performance of Snort and MalwareAnalysis
with different loads of traffic.

Load of traffic Snort MalwareAnalysis

Time (s) Time (s)

Low (20 MB) 6 20
Medium (70 MB) 5 100
High (140 MB) 45 230

metric in evaluating IDSs along with the hit rate and false
alarm ratios.

5. CONCLUSION

In this work, we presented a simulation framework that we
used to create realistic traffic logs with entries annotated
as malicious or not. Our major aim was to create network
logs that resemble as much as possible real-life traffic. To
do that, we created realistic modules for the network topol-
ogy, good traffic, and bad traffic. Different types of port
scans such as slow, distributed, and distributed-slow scans
were implemented and injected within the normal traffic.
OMNeT++ was used for simulations. We tested two IDSs,
specifically Snort and MalwareAnalysis, under different
background activities with low to high loads of traffic
and tested their robust performance. Our results show that
most of the attacks were not detected by the IDSs, which
makes our benchmarks a great tool for testing different
algorithms. The proposed testing approaches can tackle
the hurdles of testing IDSs by comparing the results of
the detection experiment with prior knowledge of number
of launched attacks. Consequently, the hit rate and false
alarms ratio can be tested along with the robust perfor-
mance of the IDS. Our future work includes further testing
the developed port scanning benchmarks with commercial
IDSs.

ACKNOWLEDGEMENTS

This work was partially funded by the American University
of Beirut Research Board (AUB-URB) and an American
University of Sharjah (AUS) Research Grant.

REFERENCES

1. Gamer T, Mayer CP. Large-scale evaluation of
distributed attack detection. In Proceedings of the
2nd International Workshop on OMNeT, Brussels,
Belgium, 2009; Article No. 68.

2. Barry BI. Intrusion detection with OMNeT. In
Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, Rome, Italy, 2009;
Article No. 5.

3. Bhuyan MH, Bhattacharyya D, Kalita J. Surveying port
scans and their detection methodologies. The Com-
puter Journal 2011; 54(10): 1565–1581.

1862 Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



W. El-Hajj, M. Al-Tamimi and F. Aloul Real traffic logs creation for testing intrusion detection systems

4. Hacker Watch, Anti-hacker Community. Available at:
http://www.hackerwatch.org/ [Accessed on 01 March
2013].

5. SNORT. Available at : http://www.snort.org [Accessed
on 01 March 2013].

6. Dokas P, Ertoz L, Kumar V, Lazarevic A, Srivastava J,
Tan P. Data mining for network intrusion detection. In
Proceedings of the NSF Workshop on Next Generation
Data Mining, Baltimore, MD, 2002; 21–30.

7. Soniya B, Wiscy M. Detection of TCP SYN scanning
using packet counts and neural network. In Proceed-
ings of the IEEE International Conference on Signal
Image Technology and Internet Based Systems (SITIS),
Bali, Indonesia, 2008; 646–649.

8. Verwoerd T, Hunt R. Intrusion detection techniques
and approaches. Computer Communications 2002; 25
(16): 1356–1365.

9. Lippmann RP, Fried DJ, Graf I. et al. Evaluating
intrusion detection systems: the 1998 DARPA off-line
intrusion detection evaluation. In DARPA Information
Survivability Conference and Exposition, 2000; 12–26.

10. The UCI KDD Archive. Information and Computer
Science University of California, Irvine. Available at:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html [accessed on 01 March 2013].

11. Wan T, Yang XD. IntruDetector: a software platform
for testing network intrusion detection algorithms. In
Proceedings of the Computer Security Applications
Conference (ACSAC), New Orleans, Louisiana, USA,
2001; 3–11.

12. Zhou S, Zhang G, Zhang G, Zhuge Z. Towards a
precise and complete internet topology generator. In
Proceedings of the International Conference on Com-
munications, Circuits and Systems, Guilin, Guangxi,
China, 2006; 1830–1834.

13. Dietrich I. OMNeT++ Traffic Generator, Sept. 2006.
Available at: http://www7.informatik.unierlangen.de/
�isabel/omnet/modules/TrafGen/.

14. Giruka V, Singhal M, Royalty J, Varanas S. Security
in wireless sensor networks. Wireless Communications
and Mobile Computing 2008; 8(1): 1–24.

15. Fragkiadakis A, Siris V, Petroulakis N, Traganitis
A. Anomaly based intrusion detection of jamming
attacks, local versus collaborative detection. Wireless
Communications and Mobile Computing 2013. DOI:
10.1002/wcm.2341.

16. Hai TH, Huh EN, Jo M. A lightweight intrusion detec-
tion framework for wireless sensor networks. Wireless
Communications and Mobile Computing 2010; 10(2):
559–572.

17. Gamer T. Collaborative anomaly-based detection of
large-scale internet attacks. Computer Networks 2012;
56(1): 169–185.

18. The NSS Group 2003. Intrusion Detection System
Group Test (Edition 4). Available at: http://www.
nss.co.uk [Accessed on 01 March 2013].

19. National Laboratory for Applied Network Research,
2003. Network Traffic Packet Header Traces. Available
at: http://pma.nlanr.net [Accessed on 01 March 2013].

20. Roemer B. BonnTraffic: a modular framework for
generating synthetic traffic for network simulations,
Nov. 2005. Available at: http://web.informatik.uni-
bonn.de/IV/bomonet/BonnTraffic.htm [Accessed on
01 March 2013].

21. http://www.ietf.org/rfc.html [Accessed on 01 March
2013].

22. Pang R, Allman M, Bennett M, Lee J, Paxson V,
Tierney B. A first look at modern enterprise traffic. In
Proceedings of the 5th ACM SIGCOMM Conference on
Internet Measurement, Berkeley, CA, USA, 2005; 2–2.

23. Kim SK, Lee SH, Seo SW. An automatic portscan
detection system with adaptive threshold setting. Jour-
nal of Communications and Networks 2010; 12 (1):
74–85.

24. Sommers J, Yegneswaran V, Barford P. Toward com-
prehensive traffic generation for online ids evaluation.
Technical Report , University of Wisconsin, 2005.

25. Gates C. Coordinated scan detection. In Proceedings of
the 16th Annual Network and Distributed System Secu-
rity Symposium (NDSS), San Diego, California, USA,
2009; 11–20.

26. White B, Lepreau J, Stoller L. et al. An integrated
experimental environment for distributed systems and
networks. ACM SIGOPS Operating Systems Review
2002; 36: 255–270.

27. (Anthraxx) DR, (Kolrabi) BP. DScan Software.
2002. Available at: http://www.u-n-f.com/dscan.html
[Accessed on 01 March 2013].

28. Mixter. Network security analysis tools. Available at:
http://nsat.sourceforge.net/ [Accessed on 01 March
2013].

29. Alon N, Moshkovitz D, Safra S. Algorithmic construc-
tion of sets for k-restrictions. ACM Transactions on
Algorithms (TALG) 2006; 2(2): 153–177.

30. Gamer T, Scharf M. Realistic simulation environments
for IP-based networks. In Proceedings of the 1st Inter-
national Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems &
Workshops, Marseille, France, 2008; Article No. 83.

31. Mayer CP, Gamer T. Integrating real world applica-
tions into OMNeT. Technical Report TM-2008-2, Insti-
tute of Telematics, University of Karlsruhe, Karlsruhe,
Germany, 2008.

32. University of Oregon. Route Views Project. Available
at: http://www.routeviews.org [Accessed on 01 March
2013].

33. Quoitin B, Van den Schrieck V, François P,
Bonaventure O. IGen: generation of router-level inter-

Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd. 1863
DOI: 10.1002/wcm



Real traffic logs creation for testing intrusion detection systems W. El-Hajj, M. Al-Tamimi and F. Aloul

net topologies through network design heuristics. In

Teletraffic Congress, Paris, France, 2009; 1–8.
34. Medina A, et al. Brite. Available at: http://www.cs.

bu.edu/brite [Accessed on 01 March 2013].
35. Benson T, Akella A, Maltz DA. Network traffic char-

acteristics of data centers in the wild. In Proceedings

of the 10th ACM SIGCOMM Conference on Internet

Measurement, Melbourne, Australia, 2010; 267–280.
36. NTT Group. Available at: http://www.nttdata.com/

global/en/ [Accessed on 01 March 2013].
37. Avallone S, Emma D, Pescap A, Ventre G. A prac-

tical demonstration of network traffic generation. In

Proceedings of the Internet and Multimedia Systems

and Applications (IMSA), Kauai, Hawaii, USA, 2004;

138–143.
38. Willinger W, Taqqu MS, Sherman R, Wilson DV.

Self-similarity through high-variability: statistical

analysis of Ethernet LAN traffic at the source level.

IEEE Transactions on Networking 1997; 5(1): 71–86.
39. Sager P. Does circuit emulation in metropolitan gigabit

ethernets require service priority. Post Diploma The-

sis NA-2005-02, Swiss Federal Institute of Technology

Zurich, 2005.
40. Park K, Willinger W. Self-similar Network Traffic

and Performance Evaluation. Wiley Online Library:

Malden, MA, USA, 2000.
41. Fras M, Mohorko J. Estimating the parameters of mea-

sured self similar traffic for modeling in OPNET. In

Proceedings of the International Workshop on Systems,

Signals and Image Processing, Maribor, Slovenia, June

2007; 78–81.
42. OPNET. Available at: http://www.opnet.com/

[accessed on 01 March 2013].
43. Choi H, Limb JO. A behavioral model of web traf-

fic. In Proceedings of the International Conference on

Network Protocols (ICNP), Toronto, Canada, 1999;

327–334.
44. Wireshark. Available at: http://www.wireshark.org/

[Accessed on 01 March 2013].
45. OMNeT++. INET Framework. http://inet.omnetpp.

org/ [Accessed on 01 March 2013].
46. Yuksel M. Traffic generator for an on-line simula-

tor. Master’s Thesis, Department of Computer Science,

Rensselaer Polytechnic Institute, 1999.
47. Dabbagh M, Ghandour AJ, Fawaz K, Hajj W, Hajj

H. Slow port scanning detection. In Proceedings of

the International Conference on Information Assur-

ance and Security (IAS), Malacca, Malaysia, 2011;

228–233.
48. Botterill D. PCAP Analyzer. Available at: http://

www.cs.bham.ac.uk/�tpc/PCAP/ [Accessed on 01

March 2013].

AUTHORS’ BIOGRAPHIES

Wassim El-Hajj is Assistant Profes-
sor and Chair of the Computer Science
department at the American University
of Beirut (AUB). He received his BS
degree from AUB in 2000 and the MS
and PhD degrees in 2002 and 2006,
respectively, from Western Michigan
University (WMU), all in Computer
Science. His research interests are in

the areas of wireless communication, network security,
and data mining. His research activities culminated with
more than 50 publications, published in reputable jour-
nals such as IEEE Transaction on Vehicular Technology,
IEEE Transactions on VLSI, and IEEE Sensors, as well
as top IEEE conferences that include ICDM, ICC, AINA,
GLOBECOM, WCNC, and ISWTA. He is the recipi-
ent of numerous recognitions, most notably, the WMU
Excellence in Research Award for three years in a row.

Mustafa Al-Tamimi received his
BSc and MSc degrees in Computer
Science from the American University
of Beirut, Lebanon, in 2009 and 2014,
respectively. At present, he is working
as an IT security officer in a pharma-
ceutical company (Broadmed). He was
also a graduate assistant at the Ameri-
can University of Beirut from 2010 to

2012. Most recently, he has focused more on research on
the behaviors of intrusion detection systems, with special
attention to realistic simulations.

Fadi Aloul (M’03-SM’08) is cur-
rently an Associate Professor of
Computer Science and Engineering at
the American University of Sharjah,
UAE. Dr. Aloul received his MS and
PhD degrees in Computer Science and
Engineering from the University of
Michigan, Ann Arbor, USA, and a
BS degree in Electrical Engineering

summa cum laude from Lawrence Technological Univer-
sity, Michigan, USA. He was a post-doc research fellow
at the University of Michigan during summer 2003
and a visiting researcher with the Advanced Technology
Group at Synopsys during summer 2005. He is a Certi-
fied Information Systems Security Professional (CISSP).
Dr. Aloul received a number of awards including the pres-
tigious Sheikh Khalifa, UAE’s President, Award for Higher
Education, AUS Excellence in Teaching Award, Abdul
Hameed Shoman Award for Young Arab Researchers and
the Semiconductor Research Corporation (SRC) Research
Fellowship. He has 98 publications in international jour-
nals and conferences, in addition to one US patent. His
current research interests are in the areas of design automa-
tion, optimization, and computer security.

1864 Wirel. Commun. Mob. Comput. 2015; 15:1851–1864 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm


	Real traffic logs creation for testing intrusion detection systems
	ABSTRACT
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Port scanning
	Intrusion detection systems
	OMNeT++ simulator
	Related work

	BENCHMARK FRAMEWORK COMPONENTS
	Network topology
	Traffic generation
	Attack traffic

	TESTING RESULTS
	CONCLUSION
	REFERENCES


