
Abstract — In mobile radio communication systems using
spread spectrum technology, an accurate estimate of the signal
propagation delay is needed in order to recover the transmitted da-
ta. This process is usually done using a pseudo noise (PN) code ac-
quisition algorithm to search for the correct propagation delay
within a window of possible delays. In this paper, we propose a new
approach to solving the PN code acquisition problem using ad-
vanced Boolean Satisfiability (SAT) techniques. SAT solvers use in-
telligent search algorithms that can traverse the search space and
efficiently prune parts that contain no solutions. These solvers have
recently been used to solve many challenging problems in Engi-
neering and Computer Science. In this paper, we show how to for-
mulate the PN code acquisition problem as a SAT instance and
evaluate the use of advanced SAT techniques in solving the prob-
lem. Our approach is verified by simulation and presented results
indicate that the proposed system achieves a detection probability
for the correct delay of almost 100% for all practical cases. 

I.   INTRODUCTION

Direct sequence spread spectrum (DS-SS) has recently been
proposed for use in third generation mobile communications
systems such as CDMA2000 and WDCMA. In DS-SS systems,
a wideband pseudo noise (PN) code is used to spread the spec-
trum of the data at the transmitter before it is transmitted over
the radio channel. This bandwidth spreading results in several
features such as resistance to multipath, accurate ranging, and
multi-user communications. Due to signal reflection, refraction,
and scattering in the radio channel, the transmitted signal goes
through several propagation paths before reaching the receiver.
It is imperative that the receiver collects the energy received
through all these paths in order to have good system perfor-
mance. This is typically done through what is known as a RAKE
receiver which consists of several correlators, called fingers,
each assigned to collect the energy of one of the multipath com-
ponents.

The PN code synchronization process is usually developed
over two stages: PN code acquisition and PN code tracking [20].
The acquisition stage is responsible for the coarse timing adjust-
ment such that the local de-spreading code is within one or one-
half chip from the received signal code. PN code tracking is then
used to refine the timing and to maintain alignment to within a
fraction of a chip (e.g. one-eighth of a chip). This paper focuses
on the PN code acquisition problem.

PN code acquisition can be accomplished by searching the
time delay uncertainty range for the correct multipath delays.
The uncertainty range represents the possible delays that the sig-
nal may have and is related to the channel memory. The delay
range is usually specified as cells that are one-chip or one-half
of a chip apart. The search of these cells, i.e. finding the cells

that have strong energy and hence multipath components, can be
either done in a serial or parallel fashion [19, 22, 23, 24].

In serial search, one cell at a time is tested by measuring the
signal energy at that cell. If the energy exceeds a preset thresh-
old then the cell is declared as a multipath cell while if the ener-
gy is below the threshold then it is declared as a no multipath
cell. The search advances to the next cell and the process is con-
tinued until all cells in the uncertainty range are tested. The other
search strategy uses parallel search where the energies of all
cells are calculated simultaneously using a parallel circuits and
cells with energy above the threshold are declared as multipath
cells. Apparently, serial search is slower compared to parallel
search at it takes longer time to search all the cells and find the
delays. On the other hand, serial search has a much lower re-
duced complexity (both hardware and processing). 

A common drawback of the existing schemes is that in
searching for the correct cells they don't utilize the inherent
structure of the PN code. These schemes need to search all pos-
sible cells in the search window, which could be as large as the
length of the PN code, in order to find the correct cells. For ex-
ample, for a PN code with a length of 2047 chips (generated by
11-stage shift register) the serial and parallel search schemes
need to test 2047 cells if the search step is one chip or twice of
that if the search step is one-half of a chip. This testing may need
to be repeated many times if the multipath components were not
detected at the first trial due to noise. In this paper, we propose
a PN code acquisition scheme that exploits the structure of the
PN code to reduce the number of decisions needed to find cor-
rect cells. The proposed scheme is based on using Boolean Sat-
isfiability (SAT) solving to perform intelligent search of the
uncertainty region and hence reduce the number of decisions
needed to find the correct cells significantly. This is done by
searching only PN code phases that result in minimum differ-
ence (minimum distance) between the PN code in the received
signal and a locally generated PN code according to the SAT
formulation (to be explained later).

Recently, Boolean Satisfiability (SAT) have been shown to
be very successful in solving complex problems in various En-
gineering and Computer Science applications. Such applications
include: Formal Verification [5], FPGA routing [17], Power Op-
timization [3], etc. SAT has also been extended to a variety of
applications in Artificial Intelligence including other well
known NP-complete problems such as graph colorability, vertex
cover, hamiltonian path, and independent sets [8]. Despite SAT
being an NP-Complete problem [7], many researchers have de-
veloped powerful SAT solvers that are able of handling prob-
lems consisting of thousands of variables and millions of
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constraints [2, 15, 16]. Briefly defined, the SAT problem con-
sists of a set of Boolean variables and a set of constraints ex-
pressed in product-of-sum form. The goal is to identify an
assignment to the variables that would satisfy all constraints or
prove that no such assignment exists.

Even though in recent years we have seen a surge in the ap-
plication of SAT techniques to assist in finding solutions to var-
ious Engineering problems, very few researchers reported on the
use of SAT-based techniques in mobile communication related
research.

The formulation of the PN acquisition as a SAT instance to
develop the search strategy is described in details in this paper.
Simulation results indicate that the proposed approach is com-
plete and is guaranteed to identify the optimal solution (correct
cells), if one exists. 

The reminder of this paper is organized as follows. Sections
II and III present the signal model and an overview of SAT, re-
spectively. Section IV describes the proposed scheme and
shows how to formulate the PN code acquisition problem as a
SAT instance. Simulation results are presented and discussed in
Section V. Finally, the paper is concluded in Section VI.

II.   SYSTEM DESCRIPTION

In this section, we provide a short discussion on the signal
model used for establishing PN code acquisition. We then dis-
cuss the acquisition process and its objectives. Finally, we intro-
duce the Boolean SAT solving technique and provide simple
examples to familiarize the reader with its use.
2.1    Signal model

A direct-sequence code division multiple access (DS-CD-
MA) system is investigated in this paper. The signal model used
is similar to that used in CDMA-2000 system where a separate
pilot signal is code multiplexed with the data (traffic) channel
for each user to allow for PN code acquisition and tracking as
well as channel estimation. The transmitted signal from the de-
sired user is given by:

 (1)

where  is the transmitted power,  is the  information
bit ( ), W is the Walsh code used to separate the pilot channel
from the traffic channel,  is the pilot channel power gain rel-
ative to the traffic channel,  is the spreading pseudo random
(PN) code of the desired user of ,  is the PN code length
which is the same as the number of chips per bit, i.e.

,  is the bit duration,  is the chip duration, and
 is the chip pulse shape.

We assume that the channel model used is Additive White
Gaussian Noise (AWGN). This model was used to simplify the
presentation of the proposed SAT algorithm and the results can
be extended to a more practical channel models used in mobile
radio systems with multipath fading. The received signal is giv-
en by

(2)
Where  is the channel delay that we would like to estimate

and  is an additive white Gaussian noise (AWGN) with zero
mean and two-sided power spectral density  that models
the effect of the receiver noise. It is assumed that the number of
users (M) is relatively large such that the interference can be
modeled as part of the AWGN model.
2.2    PN Code Acquisition Process

To maximize the signal-to-noise ratio, the received base-
band signal is first applied to a chip-matched filter to produce
the following signal

(3)

In conventional acquisition schemes, the output of the chip-
matched filter is correlated with a locally generated PN code
with different offsets that cover the delay uncertainty region
(possible the whole PN code period) as follows

(4)

where the index i indicates the delay offset. The correlation re-
sults in (4) are used to estimate the energy at different delay off-
sets and a decision is made on the multipath delays based on the
highest energy values. It is also common to use a preset thresh-
old where only energy values that exceed the threshold are de-
clared as correct multipath components while others are
ignored.

Based on the outcome of the decision process, we can have
one of the following events:

• Detection: This event occurs when the energy value
exceeds the threshold and the estimated delay matches one
of the actual delays of the multipath components in the
received signal. We would like to maximize the detection
probability to improve the performance of the RAKE
receiver in detecting the data signal.

• False Alarm: Occurs when the energy value exceeds the
threshold but the estimated delay did not match any of the
actual delays of the multipath components. We would like
to minimize the false alarm probability since the RAKE
receiver would be using a signal that has no useful energy to
detect the data.

• Miss: Occurs when the energy value is below the threshold
but the delay offset has a correct multipath component. We
would like to minimize such event since the RAKE receiver
will not get all useful energy in detecting the data. 
We would like to remark that it is not possible to achieve the

goals for the three events mentioned above simultaneously and
a trade-off is usually needed. Another important objective is to
minimize the resources needed to accomplish PN code acquisi-
tion including both hardware and processing dimensions.
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III.   BOOLEAN SATISFIABILITY

The last few years have seen significant advances in Boolean
satisfiability (SAT) solving. These advances have lead to the
successful deployment of SAT solvers in a wide range of prob-
lems in Engineering and Computer Science. Given a set of Bool-
ean variables and a set of constraints expressed in product-of-
sum form, the goal is to find a variable assignment that satisfies
all constraints or prove that no such assignment exists. The term
“Satisfiability” emerges from that fact that we are asked to find
a satisfying assignment, while the term “Boolean” comes from
the fact that such assignment consists of only true or false vari-
able states. 

The SAT problem is usually expressed in conjunctive nor-
mal form (CNF). A CNF formula  on  binary variables

 is the conjunction (AND) of  clauses 
each of which is a disjunction (OR) of one or more literals,
where a literal is the occurrence of a variable or its complement.
A formula  maps to a unique -variable Boolean function

 [14]. Clearly, a function  can be represented by
many equivalent CNF formulas. We will refer to a CNF formula
as a clause database and use “formula” and “CNF formula” in-
terchangeably.

 A variable  is said to be assigned when its logical value is
set to 0 or 1 and unassigned otherwise. A literal  is a true (false)
literal if it evaluates to 1 (0) under the current assignment to its
associated variable, and a free literal if its associated variable is
unassigned. A clause is said to be satisfied if at least one of its
literals is true, unsatisfied if all of its literals are set to false, unit
if all but a single literal are set to false, and unresolved other-
wise. A formula is said to be satisfied if all its clauses are satis-
fied, and unsatisfied if at least one of its clauses is unsatisfied.
In general, the SAT problem is defined as follows: Given a
Boolean formula in CNF, find an assignment of variables that
satisfies the formula or prove that no such assignment exists.

In the following example, the CNF formula:

 (5)
consists of 3 variables, 3 clauses, and 6 literals. The assignment

 violates the third clause and unsatisfies ,
whereas the assignment  satisfies . Note
that a problem with n variables will have  possible assignments to
test. The above example with 3 variables has 8 possible assignments.

Despite the SAT problem being NP-Complete [7], there
have been dramatic improvements in SAT solver technology
over the past decade. This has lead to the development of several
powerful SAT algorithms that are capable of solving problems
consisting of thousands of variables and millions of constraints.
Such solvers include: GRASP [15], zChaff [16], Berkmin [13],
and MiniSAT [12]. In the next three sections, we describe the
basic SAT search algorithm, recent extensions to the SAT solver
input, and the use of hardware with SAT.
3.1    Backtrack Search

Most modern complete SAT algorithms can be classified as
enhancements to the basic Davis-Logemann-Loveland (DLL)

backtrack search approach [10]. The DLL procedure performs a
search process that traverses the space of  variable assign-
ments until a satisfying assignment is found (the formula is sat-
isfiable), or all combinations have been exhausted (the formula
is unsatisfiable). It maintains a decision tree to keep track of
variable assignments and can be viewed as consisting of three
main engines: (1) Decision engine that makes elective assign-
ments to the variables, (2) Deduction engine that determines the
consequences of these assignments, typically yielding addition-
al forced assignments to, i.e. implications of, other variables,
and (3) Diagnosis engine that handles the occurrence of con-
flicts, i.e. assignments that cause the formula to become unsatis-
fiable, and backtracks appropriately. An example of a decision
tree is shown in Figure 1.

Recent studies have proposed the use of the conflict analysis
procedure in the diagnosis engine [15]. The idea is whenever a
conflict is detected, the procedure analyzes the variable assign-
ments that cause one or more clauses to become unsatisfied.
Such analysis can identify a small subset of variables whose cur-
rent assignments can be blamed for the conflict. These assign-
ments are turned into a conflict-induced clause and augmented
with the clause database to avoid regenerating the same conflict
in future parts of the search process. In essence, the procedure
performs a form of learning from the encountered conflicts. To-
day, conflict analysis is implemented in almost all SAT solvers
[13, 15, 16]. 
3.2    More Expressive Input

Restricting the input of SAT solvers to CNF formulas can re-
strict their usage in various domains. Therefore, researchers
have focused on extending SAT solvers to handle stronger input
representations. Specifically, SAT solvers [2, 6, 11, 12, 18] have
recently been extended to handle pseudo-Boolean (PB) con-
straints which are linear inequalities with integer coefficients
that can be expressed in the normalized form [2] of:

(6)
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where  and  are literals of Boolean variables. Note that
any CNF clause can be viewed as a PB constraint, e.g. clause

 is equivalent to . 
PB constraints can, in some cases, replace an exponential

number of CNF constraints. They have been found to be very ef-
ficient in expressing “counting constraints” [2]. Furthermore,
PB extends SAT solvers to handle optimization problems as op-
posed to only decision problems. Subject to a given set of CNF
and PB constraints, one can request the minimization (or maxi-
mization) of an objective function which consists of a linear
combination of the problem’s variables. 

(7)

This feature has introduced many new applications to the
SAT domain. Recent studies have also shown that SAT-based
optimization solvers can in fact compete with the best generic
integer linear programming (ILP) solvers [2, 6].
3.3    Hardware-Based SAT Solvers

Note that SAT solvers can be implemented in hardware.
Several studies proposed the use of FPGA reconfigurable sys-
tems to solve SAT problems [1, 25]. Hardware solvers could be
a standalone or as an accelerator where the problem is parti-
tioned between the hardware solver and the attached computer
using software. Many different architecture were proposed to
solve SAT problems in hardware. Linearly connected set of fi-
nite state machines, control unit, and deduction logic was pro-
posed in [25]. The authors in [25] implemented their algorithm
on Xilinx XC4028 FPGA. While in [1], the authors proposed a
technique for modeling any boolean expression. Their objective
is to set the function output to 1. A backtrack algorithm is used
to propagate the output back to the input and finding an assign-
ment of the inputs to satisfy a logical 1 at the output.

The authors in [9] proposed an architecture for evaluating
clauses in parallel. In their architecture, the clauses are separated
into a number of groups and the deduction is performed in par-
allel. Then the results are merged together to allow the assign-
ment to the variables.

A software/hardware solver for SAT was introduced in [21].
In their approach, they minimized the hardware compilation
time which greatly reduced the total time to solve the problem.
They also implemented their solver on an FPGA.

IV.   SAT MODEL FOR PN CODE ACQUISITION

A hard decision is made on the matched filter output in (3)
to get a binary sequence of data, , that represent an estimate
of the PN code in the received signal as follows

(8)

Although hard decisions are in general not sufficient statis-
tics for estimating the delay, but in the context of the developed
SAT model for PN acquisition it would be enough to provide an

estimate of the received PN code and hence allows for the SAT
search to be implemented as will be discussed later. 

In this paper we are interested in using advanced SAT solv-
ers to solve the PN code acquisition problem. To illustrate our
approach, lets assume a system consisting on n data bits and m
Shift Register (SR) bits. The depth d is equal to  levels
as shown in Figure 2. The objective is to (1) find all solutions
that satisfy the presented constraints, (2) for each solution we
compute the number of bits in which the matched filter output

 is different from the locally generated PN code, and (3) se-
lect the solution that has the smallest difference (error) as the
shift register state the corresponds to the delay offset estimate

Three sets of variables are defined for the problem: 
• A Boolean variable  is defined for each data bit i. That is

a total of n variables. A value of 1 (0) for each variable
indicates that the corresponding bit is a 1 (0) in the original
source.

• A Boolean variable  is defined for each chip as the
difference between the  and the PN code chip. That is a
total of n variables.

• A Boolean variable  is defined for each SR bit i at each
level j. That is a total of  variables.
The total number of needed Boolean variables is equal to

. 

The following set of constraints are generated:
• Data Bit Constraints: For each data bit i, its corresponding

 bit is set to 0 or 1 depending on the feeded data. This can
be expressed using a single PB constraint per data bit as
follows:

(9)

Thats a total of n PB constraints.
• Initial State Constraints: The initial SR bits should have at

least one bit assigned to 1. This can be expressed using a
single PB constraint as follows:
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(10)

• Shifting Constraints: The shifting within the shift register
relation, e.g. , is expressed
using the following equality constraint per SR bit:

(11)

This results in a total of  equality
constraints. Each equality constraint of format  can
be expressed using two CNF constraints as shown in
Table 1.

• Feedback Constraints: The PN code feedback relation,
e.g. , is expressed using the following
XOR constraint per initial SR bit:

(12)

where  according to the feedback
connection of the PN code generator. This results in a total
of  XOR constraints. Each XOR constraint of
format  is expressed using four CNF constraints
as shown in Table 1.

• Difference Constraints: The Q relation between the data
and SR bits is expressed as follows:

(13)

This results in n XOR constraints. As mentioned earlier
each XOR constraint can be expressed using four CNF
constraints.

• Optimization Function: The final optimization goal is to
minimize the sum of Qs. This is expressed using the
following PB optimization objective:

(14)

4.1    Illustrative Example
To further illustrate the formulation in SAT input, lets con-

sider the example in Figure 3. The system consists of 8 data bits
and 2 SR bits. Hence, the depth d is 3. The SAT problem gener-
ates a total of  Boolean variables. The
figure displays the needed constraints. 

V.   SIMULATION RESULTS

In this paper, we simulated a spread spectrum system with a
PN code of length 2047 (11-stage shift register) with a single
path channel. Other users in the system (interference) have been
modeled as AWGN and result in increasing the noise level in the
received signal. To reduce the simulation time, we choose to
model the effect of the noise as causing random errors in the re-
ceived PN code. In contrast, we can run the simulations for a
specific signal-to-noise ratio (SNR) and use the detected chips
as the input to the SAT PN code acquisition algorithm. We
would like to remark that there is no difference in the expected
results.

Initially, we started with a received signal that has zero error
in the PN code received (all chips are correct in equation (5)).
Although this is unrealistic since it means we have extremely
high signal-to-noise ratio, but it serves as a validation of the
functionality of the proposed SAT-based PN code acquisition
scheme. Then, we investigated different scenarios where more
realistic levels of signal-to-noise ratio are used that result in a
different percentage of errors in the received PN code. For ex-
ample, we will include results with 10-20% errors (high SNR),
30-40% errors (medium SNR) and 50% errors (low SNR). To
clarify this point, with 10% errors in the received PN code, we
have introduced about 204 errors at random locations in the se-
quence of 2047 PN code. The simulation is repeated 500 times
for the same number of errors but with randomly generated lo-
cations and the length of the received vector is assumed to be
five PN code periods (total of 10235 chips).

The SAT-based algorithm searched for the possible states
that match the received signal with the PN code and the state that

TABLE 1. Expressing logical constraints using CNF constraints.
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Fig. 3. An example of a network with 8 data bits and 2 SR bits.
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results in minimum difference is used to find the delay estimate.
Table 2 shows the minimum distance found at different error
percentages. The detection probability for the different scenari-
os is also shown in Table 2. As we can see all the cases show a
very high detection probability meaning that the SAT-based sys-
tem was able to determine the correct delay offset in all 500 ex-
periments. The only case where it failed was when the errors
were so significant (50% error rate) and that resembles a very
low SNR that is not typically expected in real systems.

The second measure of performance used to quantify the ad-
vantage of the SAT-based system over conventional serial or
parallel search strategies is the number of decisions made in or-
der to find the correct delay. As Table 2 illustrates, the SAT-
based system was able to find the delay after about 2000 deci-
sions for most of the cases and with only 13 decisions when the
error rate was 0%. Note that the number of variables in the SAT-
algorithm is about 42987 and for a brute force searcher it would
require  decisions to find the optimum solution. This il-
lustrates the advantage of the SAT-algorithm as the reduction is
quite extensive and indicated the feasibility of implementing
such algorithm in practice.

VI.   CONCLUSIONS

In this paper, a new algorithm for PN code acquisition for
mobile radio systems using Boolean satisfiability (SAT) tech-
niques is presented. The algorithm uses the structure of the PN
code to find the propagation delay and hence synchronize the
transmitted PN code with a locally generated code. The paper
demonstrates how to model the PN code acquisition problem as
a SAT problem. Simulation results showed that the proposed
scheme was successful in providing correct delay estimates
without any error for most practical cases. The computational
complexity is also shown to be very small compared to brute
force search.
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TABLE 2. SAT-base PN code acquisition simulation results.

Error 
Rate (%)

Minimum 
Distance

Probability of 
Detection

Number of 
Decisions

0 0 100 13
10 1023 100 2089
20 2047 100 2103
30 3070 100 2109
40 4094 100 2114
50 4943 0 2116


